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Calorimetry and Heat Transfer

Calorimetry and Heat Transfer

ELEMENTARY

Q.1 (1)

Water equivalent = m × c = 400 × 0.1 = 40g

Q.2 (2)

Resultant temperature is 0°C while ice will not melt.

Q.3 (4)

Utensil should have low thermal resistan ce R
KA

 
 

 



and low specific heat so that heat loss is less

Q.4 (3)

1
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Q.5 (2)

Q.6 (2)

Equivalent thermal circuit

Req = R1 + R2 =
2

KA


=

1 2K A K A


 
 K =

1 2

1 2
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Q.7 (3)

Equivalent thermal circuit

eq 1 2

1 1 1

R R R
  

eqK 2A KA 2KA
 

  

 eq
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Q.8 (4)

Given A
1
= A

2
and

1

2

K 5

K 4


 R
1
= R

2
 1 2

1 2K A K A


l l
 1 1
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K 4
 

l
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Q.9 (2)

Because of uneven surfaces of mountains, most of it’s

parts remain under shadow. So, most of the mountains.

Land is not heated up by sun rays. Besides this, sun

rays fall slanting on the mountains and are spread over

a larger area. So, the heat received by the mountains

top per unit area is less and they are less heated

compared to planes (Foot).

Q.10 (4)

According to Kirchoff’s law in spectroscopy. If a

substance emit certain wavelengths at high

temperature, it absorbs the same wavelength at

comparatively lower temperature.

Q.11 (2)

2 1 1
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Q.12 (1)
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4
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Q.14 (1)

From Stefan’s law E =T4

7
4 15 16

8

E 6.3 10
T 1.105 10 0.1105 10

5.7 10


     
 



2

Calorimetry and Heat Transfer

T = 0.58 × 104 K = 5.8 × 103 K

Q.15 (2)

According to Newton’s law of cooling

1 2 1 2
0K

t 2

      
   

 

In the first case,

0

(60 50) 60 50
K

10 2

  
   

 

1 = K (55 – ) ….(i)

In the second case,

0

(50 42) 50 42
K

10 2

  
  

 

0.8 = K(46 – 
0
) ….(ii)

Dividing (i) by (ii), we get

0

0

551

0.8 46






or 46 – 
0
= 44 – 0.8 

0


0
= 10°C

Q.16 (1)

For small difference of temperature, it is the special

case of Stefan’s law.

Q.17 (3)

In first case

60 40 60 40
K 10

7 2

  
  

 
.....(i)

In second case

40 28 40 28
K 10

t 2

  
  

 
….(ii)

By solving t = 7 minutes

JEE-MAIN

OBJECTIVE QUESTIONS

Q.1 (4)

mc= m
i
L m

i
=

mc

L



Q.2 (4)

Heat is required to raise temperature of

(Calorimeter + Ice to vapour)
at 0 to 100°C

=(10×100+{10×80+10×1×100+10×540})

=8200 Cal.

Q.3 (1)

Required heat/sec = 0.1×80 cal/gm = 8 cal/sec

Produced mass = 0.1×100 = 10 gm ice or water [now Q =

msT]

In unit time rise of temperature will be

T = Q/ms = 8/(10×1) = 0.8°C/s

R = 0.1 × 80 = 8 cal/sec.

Q.4 (1)

Using Energy conservation

The energy loss due to potential energy goes into

increasing the temperature of ice.

m
(L) mgh

5


 h =
L

5g

Q.5 (4)

From the data given

S
A


A
(8V) = (12V)

B
s

B

A B

B A

s 12

s 8




 =
3 2000

2 1500
 = 2

Q.6 (1)

Let m is the mass

mL
v
+ ms

w
(100 – 80) = (1.1 + 0.02)s

w
(80 – 15)

m(540 + 20) = (1.12) 65 m = 0.130 kg

Q.7 (4)

 dQ = msdT 
dT

dQ
=

1

ms

Solid

Liquid

vapour

Q.8 (2)

36º
A B
KA KB

T
O

d d
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K
A

= 2K
B

= 2 K

36 – T

d

 
 
 

K
A
A =

T – 0

d

 
 
 

K
B
A

(36 – T) 2 K = T K

T =
3

72
= 24

T = temp diff = 36 – 24 = 12

Q.9 (a)(1), (b)(4)

i
1
= –2

(100 – 20)

3 10
(209) 9 × 10–4

i
2
= –2

100 – 20

3 10
(385) 9 × 10–4

i
T

= i
1
+ i

2
= 1.42 × 103 w

Cu

Al

i

i =
2

1

i

i =
385

209

Q.10 (2)

It`s a parallel Combination

R
1
= AK

d

1
R

2
= AK

d

2

eqR

1
=

1R

1
+

2R

1
+ .................upto nth

eqR

1
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1R2

n
+

2R2

n
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2

n
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
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 

21

21

RR
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R
eq

= )RR(n

)RR(2
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  )nA(K

d
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=





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
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





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21
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K

1

K

1

A

d
n
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d
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d
2

 K
eq

=
2

KK 21 

Q.11 (3)

i
H

=
eq

T

R


=

1 2

700 – 100

R R

Where R
eq

= R
1
+ R

2
=

0.24

0.9 400
+

0.02

0.15 400

i
H

=
dQ

dt
=

Q

t




=

m.L

t





m

t




= Hi

L
where L = 540 cal/gm ; t = 3600 sec.

Q.12 (2)

1

1

Q

t =
1Hi =

100 0

2R


=

50

R

i
H2

=
100

R / 2
=

200

R
=

2

2

Q

t

Q
1
= Q

2
= 10 cal.

50
(2)

R
 = 2

200
t

R


t
2
=

1

2
min.

Q.13 (1)

The heat current in the bottom of pot is due to

temperature difference at the lower & upper surface.

i
p
= steel

dT
K A.

dx
=

m

t
. vL

50.2×0.15× 2

(x –100)

1.2 10
=

0.44

5 60
×2.25×106

[Let x be temperature of surface in contact with stove]

x=105.25°C
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Q.14 (3)

The heat current is equal to the heat required for fusion

of ice per dt time.

i =
dm

dt
. L

f
= KA

20 0

2.35

 
 
 

6dm
2.4 10

dt
 

Q.15 (1)

We know that

2 dT
i K( R )

dx
  , i

2R



Q.16 (2)

We know that

i = – kAdT / dx

And slope of the curve but dT/dx = – i/kA

i is constant (steady state), A is constant but since k is

decreasing from 2k to k, hence slope is –ve but less –

ve to more –ve.

Q.17 (1)

From the given condition as the plates are in series so

heat current is same.

i
1
= i

2


d2

)TT(Ak

d

TT
Ak Bc2AB

1

























AA

AA

)AB

BC

2

1

TT2

T2T4

2

1

TT(2

TT

k

k
= 1

Q.18 (4)

dT
i kA

dx
 

dT

dx


1

K

 i and A are same for both the layers.

i = – kA (dT/dx)

i and A are constant hence slope

dT/dx = –i/(kA) is – ve but

Slope (1/k)

Hence in air slope will be more – ve due to very less

conductivity.

Q.19 (2)

A B C

i =01 2

iBC

1

D

iDB

i
BC

= i
DB


1

kA(90 – 20)

 =
2

kA(20 – 0)



1

2

7

2






Q.20 (3)

R

R R

R

RR

B C

B C

T
C

– 20 = T
B

– T
C

=T
A

– T
B

=
200 – 20

3
= 60

T
C

= 80

So T
B

= 80 + 60 = 140 °C

Q.21 (2)

The heat current is equal to required latent heat of

fusion per unit time.

i =
icedm

dt
. L

f
=

kA(100)



k =
ice fdm L

.
dt A(100)


= 60 Wm–1 k–1

Q.22 (3)

i = –kA dT / dx

Slope dT/dx = – i/kA is – ve but due to radiation loss

because of not lagged, as we move ahead current i will

be less. Hence slope wil be more – ve to less – ve.

Q.23 (1)
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p

100 0
T 50

2


  

As T
P

> T
Q

so flow is from P to Q.

Q

30 60
T 45

2


  

Q.24 (1)

Slope dT/dX = – i/kA is less – ve for 1st layer Hence 1st

layer should have larger k.

So k
1
> k

2

Q.25 (1)

Consider the two sections like two resistance R
1
& R

2
.

R
A

=
1

1k A


R

B
=

1

1

2

k
A

2



So  B

A B

R
100 – 0

R R

 
   

 

= 80° C

Q.26 (1)

B

d 3d

KA

KBA
C

Q.27 (3)

Initially i =
dm

dt
. L

f
= kR2.

100



Hence
2dm kR

dt




From given condition

2

2

2
1

k (2R)dm
4 / 2dt

dm kR

dt

 
 
 




2dm

dt 2
0.1

 
2dm

0.2
dt



Q.28 (1)

As the heat current through all the rods is same. So all

the resistance are in series.

R
eq

= R
1
+ R

2
+ R

3

kAkA5
A

2

kAk

3

eq




k5

16

k

1

k5

1

k

2

Ak

3

eq



k
16

15
keq 

Q.29 (1)

Req. is same for both the rods and same temperature

same difference so i
1
= i

2

Q.30 (4)

k
2

, , ,

R
eq

= R
1

+ R
2

+ R
3

where R
1

=
A)k2(


, R

2
=

kA


, R

3

A
2

k











eqR

0100 
=

1

1

R

T100 
=

21

2

RR

T100




=

3

2

R

0T 

Q.31 (1)

P
emitte

=  eAT4

since T
1

= T
2

P
absorb

=  eAT
S

4

MH MS

T T
M < MH S

Hollow Solid

So, P
1
= P

2
at t = 0
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cooling rate
dT

dt

 
 
 

=
4 4

S

eA
[T T ]

mS




since M
H

< M
S

, so cooling rate will be different since

cooling rate is not same so both will not have same

temp at any instant t (except t = 0)

Q.32 (2)

dT

dt

 
 
 

=
4 4

S

eA
[T T ]

mS




Rate of temperature fall will be maximum when (T4 –

T
S

4) has mass value i.e. T has max. value

max

dT

df

 
 
 

=
4 4eA

[500 300 ]
mS


 Put all values & get

answer.

Q.33 (3)

For small temperature difference, Stefan's law can

written as

u = eA[(T + T)4 – T4]

or u = eAT4

4
T

1 1
T

  
   

   

or u = eAT4 × 4 ×
T

T



or u T

Hence Newton's law of cooling is a special case of

stefan's law.

Q.34 (4)

Power

4
4 b

ATA
dt

dQ
P 












81

256

4/3P

P
4

0

0

4

2

1

1

2 




























Q.35 (2)

Let 2d4

'P
I


 or 2

4

d4

ATe
I






and I A
f
= P (Given)

Now P
new

= I
new

A
f
= f2

4

A.
)d2(4

)T2(Ae





= P
4

16
A.

d4

ATe

4

16
f2

4


















Q.36 (1)

We know that

T

1
max 

1

2

max2

max1

T

T






 4

3

T

T

1

2 

Q.37 (3)

p QdT dT
– x –

dt dt

 
  

 



4 4
p 0

p

eA (T – T )

m S


=

4 4
Q 0

Q

xe A (T – T )

m S





2 3
p Q

Q p

A m r 3r
x

A m 3r r

   
     

   

 x = 3

Q.38 (2)

Initially the temperature of the substance increases and

then phase change from ice to water occurs & this

process continues.

Q.39 (4)

Area = ydx =
dE

d dE
d

  
 

Area (1) = E =T4 =

4
b 

 
 

4

1 2

2 1

Area

Area

 
  

 


1

9
=

4

2

1

 
 
 


1

2

3





Q.40 (2)

Using relation 
max


1

T
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max

max

NSS

NS S

T 350
0.69

T 510


  


Q.41 (2)

Using formula

P=eAT4

P
P

= 
P
 (1) 

P
4 and P

Q
= 

Q
A

Q
4

Now P
P

= P
Q

 
   

  

1/ 4

Q

Q P

p

Q.42 (1)

E
273

= eA (273 + 273)4

=E(Given)

E
0
= eA (273 + 0)4

0

E
E

16


Q.43 (2)

 Rate of cooling, y = (T – T
0
) k (from Newton's law

of cooling)

T
0

: surrounding temperature

k : +ve constant

 graph is straight line with +ve slope

Q.44 (4)

i =
d

ms
dt


= msk (50°–20°) = 10 W ..(1)

and
35.1– 34.9

60
= k (35 –20) ...(2)

from (1) & (2)

0.2

60
=

10

ms(30) × 15

ms = 1500 J/°C

Q.45 (2)

If the body cools from 
1

to 
2

then using formula

1 2

t

  
=

1 2
0

2

   
   
 

4

50–60
= k 0

60 50
–

2

 
 

 

2

5
= k ( 55 – 

0
) ...(1)

and
40 –30

8
= k 











0–

2

3040

)–35(k
4

5
0 ..(2)

from (1) & (2)

0

0

–35

–55
2







0
= 70 – 55 = 15°C

Q.46 (1)

If the body cools from 
1

to 
2

then using formula

1 2

t

  
=

1 2
0

2

   
   
 

75 – 65

5
= k

75 65
– 25

2

 
 
 

2 = K(70 – 25)
2

K
45



Now
65 – x

5
=

65 x
k – 25

2

 
 
 

2 (65 – x) = 5k (65 + x – 50)

130 – 2x = 5 ×
2

45
(15 + x)

x= 57°c

Q.47 (3)








 
 16–

2

3640
k

5

36–40

)16–38(K
5

4


 k =
55

2

..(1)

t

32–36
=

55

2







 
16–

2

3236

)16–34(
t

552




t = 6.1 min
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JEE-ADVANCED

OBJECTIVE QUESTIONS

Q.1 (C)

Water flow rate = 20 gm/sec

for 1 sec

Q = P×t = 2100×1 = 2100 J

Q = 2100 = 20 × 4.2 (t – 10)

t = 35°C

Q.2 (B)

For 1 sec we can say that

P
c  80 % = (v) s (t – 10)

2×103×
100

80
=(1000).100×(10–2)3.4200(t-10).

On solving

t = 13.8 °C

Q.3 (A)

(m
w

+ w
f
) (1) (70–40) = m

ice
L

f
+m

ice
(1)(40-0)

(200+w
f
) (70–40) = 500 L

f
+50×40 ..(1)

(m
w

+w
f
+m

ice
) (40–10)=m

ice
L

f
+m’

ice
(1)(10–0)

(200+w+50) 30 = 80 L
f
+ 80 × 10 ..(2)

from eq. (1) & (2)

50 × 30 = 30 L
f
– 30×40

L
f
= 90 cal/gm = 3.78 × 105 J/kg

Q.4 (B)

At a temperature T

dQ = SdT = aT3dT

Q = 
2

1

3dTTa =
4

]T[a 2
1

4

=
4

a15

Q.5 (C)

For vapourization the total time required is

= (30 – 20) min = 10 min

Total Heat Given = 42 KtJ × 10 = 420 KJ

so mL = 420 kJ

5L = 420L = 84 KJ/kg

Q.6 (C)

Ice Changes to water hence volume decreases but mass

remains same hence

V
w

P
w

= V
ice

P
ice

V
w

=
ice ice

w

V P

P

Let volume (V
ice

) change to water

(0.9 
w

V
ice

)L = H

...(1)

v = v
ice

– v
w

=
ice ice

ice

w

v
v
 

 
 

= v
ice

(1 – 0.9) = 0.1 v
ice

= 1 cm3

v
ice

= 10 cm3

So from eq. (1)

[0.9 × 1 × 10] × 80 = H

H = 720 cal.

Q.7 (C)

i
H

=  KA/y

)(–0 
= y

KA
=

dt

dQ

dt

dQ
= L

dt

dm
= L

dt

dyA.

y

KA
= AL

dt

dy


4

2

ydy =  










3600

0 L

K
dt

4
2

22

y













=

L

K



 3600

0
)t(

Where K = 4 × 10–3

 = 0.9 gm/cc

L = 80 cal /gm

Q.8 (C)


1
– 

2
= 





R

R
2

1

1 r4K

dr

–
=

 



2

1

R

R

2

21

r4K

dr

–
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












R

1
–

R

1

K4

1

2/

11

=














211 R

1
–

R

1

K4

1

R = 1 2

1 2

2R R

R R

Q.9 (A)

4/

A
T1

B
T2D

Initially

H =
R

)TT(kA

R)2(

)TT(kA 1212









...(1)

finally 2H=
R

)TT(A'k

R)2(

)TT(kA 1212









...(2)

from (1) & (2)
3

k7
k

3

k4
'k 

Q.10 (C)

 


2

1

r

r 2)r4(k

dr
dR

dr
r














21
eq

r

1

r

1

k4

1
R

Now R
1
(when r

1
= R, r

2
= 2R) =

kR8

1



and R
2
(when r

1
= 2R, r

2
= 3R) = 










 3

1

2

1

kR4

1

=
kR24

1



0°C R1 R2T

T = 100
RR

R

21

1 
 = 75° C

Q.11 (A)

Taking an element at a distance x of length dx and

having at temperature difference dT.

dx

dT
A

T
i


 = C (const.)


1

T
TA[ nT] Cx 

x
T1

T + dT

T2

dx

L

1

T C
n x

T A

   
    

  


at x = L, T = T
2


A

C
=

1

2

T

T
ln

L



So T=

L/x

1

2
1

T

T
T 









Q.12 (C)
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36 = kA
8

4T
kA

8

100T







 








 

K = 0.5 cal/ºc/cm

A = 12 cm2 .

Q.13 (D)

R
eq

= 2 R
g
+ R

air
= Ak

)mm3(2

g
+ Ak

)mm3(

air

R = A.k

mm6

g

B

A

i

i
=

R

T

R

T

eq





=
eqR

R
=











AK

mm3

AK

)mm3(2

A.K

mm6

airg

g
=

airg

gair

g

K.K2

KK2

K

1



=
airg

air

K2K

K2



Q.14 (B)

Let at time t radius be r

Then
dQ

dt
= CA = 4Cr2 = –

dt

dm
.L

f

m = 
ice 3

4
r3  dm = C

0
r2 dr

So. (4 C) r2 = – L
f
C

0
r2

dt

dr
 const

dt

dr


Q.15 (B)

H =  e AT4

H A  r2

C =
ms

Ae
(4T

S
3 T) C 

m

A
 3

2

r

r
 r

Q.16 (D)

e
A

: e
B

: e
C

= 1 :
2

1
:

4

1

Rate of emission :
dt

dQ
= eAT4 is same

So, eT4 is same T
A
4 : T

B
4 : T

C
4 =

Ae

1
:

Be

1
:

Ce

1
= 1 : 2 : 4

as T = b = constant

So, 
A
4 : 

B
4: 

C
4 = 4

AT

1
: 4

BT

1
: 4

CT

1

= 1 :
2

1
:

4

1

On solving
A A A B B B C C Ce T e T e T    

Loss(copper) = gain (water + beaker)

m
CH

s
CH

(T
CH

–T) = m
W

s
W

(T–T
W

) + m
b
s

b
(T–T

W
)

Hence final temperature can be calculated.

Q.2 (D)

Rate of melting is doubled if Rate of heat flow is doubled

and Rate


)0T(KA

dt

dQ 


in (D) T is doubled (50 to 100°C)

and area and length are also doubled hence
dt

dQ

doubles.

Q.3 (A, B ,C)

Heat required to melt ice

Heat given by the water = m × 10 × 1 = 10m

Heat required to melt ice > Heat given by water so

complete ice will not melt.

Q.4 (A,B)

P
1
= P

2

T
A


A
= T

B


B

Q.1 (D)

MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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 e
A

AT
A

4 =  e
B

AT
B

4

T
A
= T

B
(+ 1)

B

A

T

T
=

4/1

01.0

81.0








= 3

 =
2

1
m

T
B

=
3

TA
=

3

5802
= 1934 K


B

=+ 1 = 1.5m

Q.5 (B,C)

Let the diameter of the sun be D and its distance from

the earth be R.

R

D
= 

The radiation emitted by the surface of the sun per unit

time is

2

2

D
4 








 T4 =D2T4.

At distance R, this radiation falls on an area 4R2 in

unit time. The radiation received at the earth’s surface

per unit time per unit area is, therefore.

s =

24

2

42

R

D

4

T

R4

TD













.

Thus, s  T4 and s 2

Q.6 (A,C)

T  = Constant 
m

=
max

C



max

T

 = Constant

2

2

1

1 TT




 
2

=
1

2

T

T
. 

1
=

T

T2
. 

1
= 2 

1

E =  e AT4

E  T4

1

2

E

E
= (2)4 = 16

Q.7 (C,D)

Not Reflected and Not Refracted.

Q.8 (A,B,C)

Good Absorbers are good emitters.

Q.9 (A,B,D)

dt

dQ
= e AT4

So,
dt

dQ
A

 e (nature of surface)

T (temprature)

But independent of mass.

Q.10 (A,B)

(A)
dt

dQ
= e AT4

(Rate of emission is same initially)

(B)
dt

dQa
= e AT

0
4

(Rate of obsorption is same always)

(C)
4 4

0eA (T T )dT

dt ms

 


(Due to lesser mass of hollow sphere it cools fast.)

(wrong)

(D) Since hollow sphere cools fast ;

hollow will have smaller temperature at any

moment.(wrong)

Q.11 (A,B,C,D)

 4
0

4 TT
mc

eA

dt

dT














Q.12 (C,D)

(A) Heat absorption is surface phenomenon hence

wooden (Black surface) absorbs more.(wrong)

(B) After long time both will have temperature of

surroundings.(wrong)

(C) Because metal is better conductor it feels hotter.

(D) Because emission depend on surface (i.e. more for

black surface)

Q.13 (AC)

m
A
= 4m

B
,  ×

3

4
r

A
3 = ×

3

4
r

B
3 × 4

B

A

r

r
= 41/3

= 22/3

Rate of heat loss =
dt

dQ
= eA(T4–T

0
4)
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Ratio
B

A

)dt/dQ(

)dt/dQ(
=

B

A

A

A
=

2

B

A

r

r








=24/3

Rate of cooling
dT dQ /dt

dt ms




Ratio
B

A

)dt/dT(

)dt/dT(




=

B

A

)dt/dQ(

)dt/dQ(
×

A

B

m

m
= 24/3 ×

4

1

= 2–2/3

Q.14 (B)

In steady state
4layer1layer t

Q

t

Q










 2105.1

)2530(A06.0



= 2105.3

TA10.0




T =7°C

T
3
= (– 10 + 7)°C = – 3°C

Q.15 (A)

3layer1layer t

Q

t

Q










 2105.1

5A06.0



= 2108.2

TA04.0



T = 14°C

T
3
= (– 3 + 14)°C = 11°C

Q.16 (A)

2layer1layer t

Q

t

Q










 2105.1

5A06.0



= 2

2

104.1

14AK



K

2
= 0.02 W/mK

Q.17 (B)

We have  – 
s
= (


– 

s
) e–kt

where 

= Initial temperature of body = 40°C

 = temperature of body after time t.

Since body cools from 40 to 38 in 10min, we have

38 – 30= (40 – 30) e– k 10.... (1)

Let after 10 min, The body temp. be 

 – 30 = (38 – 30) e–k 10 .... (2)

)2(

)1(
gives

8

10

30

8



,  – 30 = 6.4  = 36.4 °C

Q.18 (A)

Temperature decreases exponentially.

Q.19 (C)

During heating process from 38 to 40 in 10 min. The

body will lose heat in the surrounding which will be

exactly equal to the heat lost when it is cooled from 40

to 38 in 10 min, which is equal to ms  = 2 × 2 = 4 J.

During heating process heat required by the body = m

s  = 4 J.

Total heat required = 8 J.

Q.20 (A,B)

(A) Emitted energy is very less for longer and shorter

wavelength.

(B) From fig. at 
m

intensity is maximum 

(C) Area under the curve shows amount of energy

emitted.

Q.21 (A,B,C,D)

When T curve shifts towards shorter wavelength

hence curve spreads i.e. Area increases.

Q.22 (


m


T

1
, T' > T So, option B is correct.

Q.23 (A)

Thermal resistance is given as

R
A

=
kA3


R

B
=

kA



3

1

R

R

B

A 

Q.24 (B)

As the rods are in series so that current is same.

A A3k T
i 

 
BkAT



3

1

T

T

B

A 

Q.25 (B)

For temperature gradient comparing
dT

dx
for A & B.

BA ii  
BA dx

dT
kA

dx

dT
kA3 


















3kAG
A

= kAG
B

3

1

G

G

B

A 
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.26 (A)

In 40 min. temperature of water has come down by 40°C.

Therefore rate

P =
t

TSm 
=

6040

40420060.0




= 42.0 W

Q.27 (C)

Sample of ice has been receiving heat at constant rate

P from water. Its temperature has increased by 30°C in

time 60 min.

Therefore
P

Tsm iii 
= 60 min.

m = )C30(.)kg/J2100(

)W42()s6060(




= 2.4 kg

Q.28 (B)

Thermal equilibrium reaches after 60 min. Ice conversion

takes place for 20 min. During this time water at 0°C

continues to give heat at rate P.

m × L
f

= P × (20 × 60s) m = 5103.3

602042




kg

= 0.15 kg

Q.29 (D)

Q.30 (B)

Q.31 (A)

(Q. 29 to 31)

As steam has comparatively large amount of heat to

provide in the form of latent heat we check what amount

of heat is required by the water and ice to go up to

100°C, that is

(m
i
L + m

i
S

w
T) + m

w
. S

w
.T

= [(200 × 80) + (200 × 1 × 100)] + (200 × 1× 45)

= 45,000 cal.

That is given by m mass of steam, then

m
s
.L=45,000

m
s
=

540

000,45
=

6

500
= 83.3 gm

therefore 83.3 gm steam converts into water of

100°C.

Total water = 200 + 200 + 83.3 = 483.3 gm

steam left = 16.7 gm.

Q.32 (A) p, s, (B) t (C) q, r (D) t

(A) Initially more heat will enter through section A

due to temperature difference and no heat will flow

through section B because initially there is no

temperature difference.

(B) At steady state rate of heat flow 








dt

dQ
is same for

all sections

(C) At steady state
dt

dQ
= kA

dx

dT
or

dx

dT

= 








dt

dQ

kA

1

dx

dT
is inversely proportional to area of cross-section.

Hence is maximum at B and minimum atA

(D) At steady state heat accumulation = 0

So
dt

dT
= 0 for any section.

Q.33 (A) p,q, (B) r, (C) s, (D) r

(A) For a perfectly black body, both absorption and

emission of radiation occurs.

(B) For a perfectly polished body cent percent reflection

occurs.

(C) When radiation is incident from rarer to denser

medium, both reflection and refraction occurs.

(D) When radiation is incident from denser to rarer

medium, reflection always occurs but refraction may or

may not occur.

NUMERICALVALUE BASED

Q.1 [4]

Qloss = Qgain

mCSCTC = mice L

(CA) (SC) (T – 0) = (ice Ah)L

h =
C C

ice

S T

L







A

B

h

h =
A A

B B

S

S



 =
(4)(0.2)

(2)(0.1) = 4

Q.2 [5]

200 × S × 30 + 50 × S × 40 = 250 × S × T1

40ºC 30ºC

200 g 200 g

50
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T1 = 32º

32 × S × 50 + 150 × S × 40 = 200 × S × T2

T2 = 38º

200 × S × 32 + 50 × S × 38 = 250 × S × T3

T3 = 33.2º

33.2 × S × 50 + 150 × S × 38 = 200 × S × T4

T4 = 36.8º

36.8 × S × 50 + 200 × S × 33.2 = 250 × S × T5

T5 = 33.92º

Q.3 [1716]

1

2

1
2

dt

dQ
=

L

Ak 11
T +

L

Ak 22
T =

5.0

78180 
+

5.0

781
2

1
14 2

2


























= 156 




 


2

)2(7
80 = 156 















 


7

1422
780

= 156 × 88 ×
dt

dm
× L

f
=

dt

dm
× 80 × 4200

m =
420080

60788156




= 11 × 156 × 10–3 kg

=1716 gm

Q.4 [0516]

dt

dQ
=  × 0.8 × 4r1

2 [8004 – 6004]

800

600

= k ×
2

'
2

'
22

rr

rr4




× (600 – T)

r2r2'  r2
2

600 – T

=
085.0

100

5
102810010

100

1

10

9.0
10

3

17 388  

T = 516 K

Q.5 [340]

The rate of the heat transfer is approximately

proportional to the temperature difference, between

radiator and room as well as between the room and the

outside. The corresponding proportionality constants

can be denoted as C ("radiator-room") and D("room-

outside").

Then, initially,

C(T – 300) = D(300 – 260)

For the second set of temperatures:

C(T – 290) = D(290 – 240)

Solving the equations yields T = 340 K

Q.6 [2606]

The process would be

1 kg water at 80ºC  
 1H

1 kg water at 100ºC

H2

1 kg vapour at 100ºC and
2 atm pressure

H
1
= ms = 1 × 4.2 × 103 × 20

= 8.4 × 104 J

H
2
= mL

v
+ PV

= 1 × 580 × 103 × 4.2 + 2 × 105 × 850.14 × 10–3

= 26.06 × 105  J = 2606 kJ

Q.7 [0041]

Neglecting other heat losses

Heat lost by water = Heat gained by

thermometer

m
1
s

1
(

1
– 40º) = m

2
s

2
(40º – 10º)

m
1
= mass of water

m
2
= mass of thermometer

s
1

= specific heat of water

s
2
= specific heat of thermometer


1
= 40.6 ºC

 41ºC
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Q.8 [8]

wS100

K

dt

dT


 (T – T

0
)

 





5

0 w

35

40 0 S100

K

TT

dT
dt

 





2

0

35

40 0 s100

dt

)TT(

dT



S100

K2

S100

`K5

w 




=

5

4
g/cm3 = 36

3

m105

kg104







=

310
5

4


=
5

40
×102 = 800kg/m3

Q.9 [8]

When Cu rod is used

CuR

100
× 20 = m × L …..(1)

when stell rod is used

stellR

100
× 60 = mL ….(2)

when both are in series

R
eq

= R
Cu

× R
stell

stellCu RR

100

 × t = mL

from (1) & (2)

R
Cu

=
mL

2000

R
stell

=
mL

6000

8000

tmL100 
= mL

t = 80 minutes

Q.10 [9]

Q = msT + mL

= 450 cal

450 × 4 = 9000 J

KVPY

PREVIOUS YEAR'S

Q.1 (A)

All the three object will be in thermal equilibrium then

% T
1
= T

2
= T

3

Q.2 (A)

P = AT4

=× 4R2 × T4

4

2 T
P ' 4 (2R)

2

 
    

 

2 4 1
P' 4 R T 4

16
    

P
P '

4


Q.3 (D)

1 2

100 T T 0

R R

 


1

2

R100 T

T R




L
R

KA


1 2

2 1

R k

R k


100 T 50 10

T 385 77


 

7700 – 77 T = 10T

7700 = 87 T

7700
T 88 C

87
  

Cu Steel

k1 k2

100 0
T

Q.4 (D)

Heat loss by water = heat gain by ice.

100 × 1 × 80 = m × 80

m = 100 gm ice melt

 Remaining ice = 50 g

Q.5 (B)

Ice has low thermal conductivity

So no exchange of heat outside surrounding.

Q.6 (B)
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Energy radiated, U AT4 t



4
2

4
1

U A / 2(2T) .t
8

U AT .t
 

 U
2
= 8U

1

 mSt
2
= 8mSt

1

 t
2
= 8t

1

Q.7 (A)

100°C 0°C
Custeel

T

   50 A 100 T 400 A T 0

0.1 0.2

     


Q.8 (C)

100°C
0°C

Heat capacity increase with temperature

Q.9 (A)

Pt = m
w
S

w
T + m

c
s

c
T

10 × 15 × 60 = 0.5 × 4200 × 3 + m
c
s

c
× 3

9000 = 6300 + m
c
s

c
3

m
c
s

c
= 900 J/k.

Now, for oil

10 × 20 × 60 = 2 × S
0
× 2 + 900 × 2

12000 –1800 = 4 S
0

3
0

10200
S 2.51 10 J / kg – k

4
  

Q.10 (D)

kA kA
3 [100 T] [T 0]  
 

3w – 3T = T

T = 75º C

Q.11 (A)

E Radiated by Sun

E = 4r2 × 1.4 kW = mC2

E = 4× (1.5 5 1011) × 1.4 × 103 = m. (3 × 108)2

m =
2 94 22 (1.5) 1.4 10

7 9

   


= 109 kg / s

Q.12 (C)

Specific heat of water is very high

 It temperature rises by small amount.

Q.13 (D)

Surface area of Ice get increases by crushing and

colling due to ice occur due to convection process

which is proportional to area.

Q.14 (C)

Calorimetry principle

Heat lost = Heat gain

Heat loss by aluminum = Heat gain by water

50 × 10–3 × 900 × (300 – 160) = 1 × 4200 × (T – 30)

 6300 = 4200 (T – 30)

 1.5 = T – 30

 T = 31.5ºC

Q.15 (A)

1 kg ice 2 kg water
90ºC–20ºC

Heat loss

ms T

2×4.18×90
1 kg ice

0ºC

1×2.0.9×20

Heat gain
ms T

Heat gain
mL

334.4×1

3 kg water
0ºC

Total heat gain = 20 × 2.09 + 334.4 KJ = 376.2 kJ

Total heat loss = 752.4 kJ

Heat gain required = 752.4 – 376.2 = 376.2 kJ

376.2 = msT

376.2 = 3 × 4.18 × T

T = 30 centigrate

T
final

= 30oC

Q.16 (A)

Because on earth there is no atmosphere. So water will

boil. (At Boiling point vapour pressure = Atmospheric

pressure, in open vessel)

Q.17 (C)

MB = 20 × 10–3 Kg

CB = 5000 J / Kg-ºC

V = 2000 M/s
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M
w

= 1 Kg

C
w

= 3000 J / Kg – ºC

T
f
= 25º C = 298 K

1

2
MV2 = M

w
C

w
T

w
+ M

B
C

B
T

B

1

2
 M

B
V2 = M

w
C

w
(T

w
) + M

B
C

B
T

B

1

2
 × 20 × 10–3 × 4 × 106

= (T) {1×3000 + 20 × 10–3 × 5000}

 40 × 103 = T { 3000 + 100}

340 10
T

3100


 

T = 12.9

T
f

– 25 = 12.9

T
f
= 25 + 12.9 = 37.9oC

Q.18 (B)

r



dm d
S T

dt dt


  

8d
5 10 volume of rod

dt


  

 
28 6 0.2

5 10 4 10
10

    

= 5 × 10 × × 16 × 2

=1600

× 4× 103T = 1600

× 102T = 16 × 102

T = 3.14 × 2

 6.28ºC

Q.19 (B)

h = hA 0 h = hB 0

m
t

A


V
t k. k. h

A


  

t h


0A A

B B 0

ht h

t h 2h
   t

B
= 2t

A

Q.20 (B)

21 dsdsds 

ds =
1 2

Q Q

T T




1 2

1 1
ds Q

T T

 
   

 

1 2

ds Q 1 1

dt dt T T

 
   

 

1 2 2 1

1 2

(T T ) T Tds

dt R TT

   
  

 

1 2 1 2

1 2

(T T ) T Tds

dt R TT

  
  

 

2 2
1 2 1 2

1 2

T T 2T Tds 1

dt T T R

  
  
 

1 2

2 1

T Tds 1
2

dt T T R

 
   
 

1 1
y x 2

x R

 
   
 

Q.21 (C)

Vaporization rate of water = 20 g/h

Water vaporized in 2 hour = 20×2 gm

dm =
40

kg
1000

Latent heatof vaparisation

specificheatof water = 540 =
L

C

heat contain in vaporised vapor = (dm).L = (dm). L

Heat lost by water in earthen pitcher = mc. dT

m = 4kg

heat loss by water in earthen pitcher = heat contain in

vaporised water dm. L = m.C. dT
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40 L

1000 C

 
 
 

= 4. dT

dT =
1

100
× 540 = 5.4 ºC

dT = 5.4 ºC

Q.22 (A)

100º L = 200 ºC

1º L =2 º L

0 ºC = 25ºL

100 ºC= 75ºL,

Q.23 (B)

50 t
0
(540) + 50 to (100 – 70) = 500 (1) (70 – 25)

28500 t
0
= 22500

t
0
= 0.789 min = 47 sec

Q.24 (D)

The minimum observed intensity of the parent star is

0.9999I
0

Q.25 (D)

Pbody =(4(50Rs)
2)(2Ts)

4

 Pbody = Psun × (50)2 × (2)4

Intensity at earth due to body

=

2 4
body sun

2 20 2
body

P (50) 2 P

4 R 4 10 (4 AU)

 


   

 Ibody = 10–16 × Isun

Q.26 (B)

P = ms
dT

dt



0

1 T

0 T

Pdt msdT 

= Pt = ms (T – T0)

 T =
P

ms
t + T0

where T0 is temperature at t = t0

T

T0

t

ms

P
slope 

Q.27 (C)

T Tm 2T

Rate of heat absorbed = Rate of heat emitted

AT4 +A(2T)4 =2atM4

Tm =
17

2

 
 
 

= 1.7 T

Q.28 (A)

F

yA


  





F
5 C

yA
   



 = 20 – T = 5

T = 15°C

Q.29 (B)

4 4
0 s

dQ
eA [T T ]

dt
  

e = 1,A= 7 × 10–2, s = 5.67 × 10–8

T
0
= 333 K, T

s
= 273 K

dQ
26.75 Watt

dt


total energy produced =
10

100
× 30 × 103 × 300

 9 × 105 J



59 10
time hrs 9.35 hrs

26.75 3600


 



JEE-MAIN

PREVIOUS YEAR'S

Q.1 (4)

Sol.
2

2R

  
=

1

1R

  

2 – R1 = R2 – 1R2

[R1 + R2] = R2 + 2R1

 =
1 2 2 1

1 2

R R

R R

  


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Q.2 (1)

Keq

2

ff =
1K A

l
+

2K A

l
=

eq

2

K A

l



1 2

eq

1 2

2K K
K

K K

Q.3 (3)

Q.4 (2)

Q.5 [57]

Q.6 (4)

Q.7 (1)

Thermal resistance of spherical sheet of thickness dr

and radius r is

dR = 2

dr

K(4 r )

R =

2

1

r

r

dr

K(4 r )

R =
2 1

1 2 1 2

r – r1 1 1 1
–

4 r r 4 K r r

   
   

    

Thermal current (i) = 2 1–

R

 

i =
1 2

2 1

2 1

4 Kr r
( – )

r – r


 

Q.8 [2]

JEE-ADVANCED

PREVIOUS YEAR'S

Q.1 (A,C,D)

A : At steady state, heat flow throughAand E are same.

C: T = i × R

‘i’ is same for A and E but R is smallest for E.

D : i
B

=
BR

T

i
C

=
CR

T

i
D

=
DR

T

if i
c
= i

B
+ i

D

Hence
DBC R

1

R

1

R

1




kA5KA3KA8


Q.2 (C)

In steady state energy absorbed by middle plate is equal

to energy

released by middle plate.

A(3T)4 –A(T’)4=A(T’)4–A(2T)4

(3T)4 – (T’)4 = (T’)4 – (2T)4

(2T’)4 = (16 + 81) T4

T’ = T
2

97
4/1










Q.3 (A)

In configuration 1 equivalent thermal resistance is
2

R3

In configuration 2 equivalent thermal resistance is

3

R

Thermal Resistance  time taken by heat flow from

high temperature to low temperature

Q.4 (A)

In steady state
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24
0

42 R4)TT(R   (T4 – 4
0T ) 4

 T4 – 4
0T = 40 × 108  T4 – 81×108 = 40

×108

 T4 = 121 ×108  T  330 K

Q.5 (B)

P
device

– P
cooler

=
ms T

t





3000 – P =

3 0120 4.2 10 20

3 60 60

  

 

2067P W 

Hence, (B)

Q.6 (C,D)

As mT = constant

&

2V
P

R


Hence, (c, d)

Q.7 [9]

 
4

2

0

487 273
1 log

eA

P

  
  

  

&
 

4

2

0

2767 273
log

eA
x

P

  
  

  

9x 

Q.8 (A)

10 400
140

2

Q Q

Q

T T
T

R R

 
  

dl
T

dx
 

 
1

0 0

130 0.78
l

dl x dx l mm


    

Hence, (A)

Q.9 (B)

(A) Since the temperature of the body remains same,

therefore heat rdiated by the body is same as before.

 4 4
1W aT a(310)   

(B) W  Area

If exposed area deacreases, energy radiated also

decreases.

(C)
m
T = b  T ,


m


(D) (W
1
=aT4 =a(310)4)

4 2
0T 460Wm 

a(310)4 > 460 Wm–2

Q.10 [4.00]

We have in steady state,

300k
r

k1

L

L

k2200k
100k

2r

2 2
1 2

200 – 300 200 –100
0

L L

k r k (2r)

   
   
    
   
       


2 2

1 2k r 100 100k 4r

L L

  
 

1

2

k
4

k


Q.11 (A)

P =
dQ

dt
T

(t)
=T

0
(1+ t1/4)

dQ

dt
= ms

dT

dt
 S =

P

dT

dt

 
 
 

dT

dt
= T

0
–3/4 –3/40T1

0 .t .t
4 4

 
  

 

S =
3/4

0

P 4P
.t

(dT / dt) T



S =

3/4

0

4P t

T

 
 

   

1/4

0

T(t)
(1 t )

T
 

1/4 0

0 0

T(t) – TT(t)
t 1

T T
   
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t3/4 =

3

0

0

T(t) – T

.T

 
 

 

 S =

3

30
04 4

0 0 0

T(t) T4P 4P
[T(t) – T ]

T .T T

 
 

   

Q.12 [270.00]

Let m = mass of calorimeter,

x = specific heat of calorimeter

s = specifc heat of liquid

L = latent heat of liquid

First 5 g of liquid at 30° is poured to calorimter at 110°C

m × x × (110 – 80) = 5 × s × (80 × 30) + 5 L

mx × 30 = 250 s + 5 L ... (i)

Now, 80 g of liquid at 30° is poured into calorimeter at

80°C, the equilibrium temperature reaches to 50°C.

m × x × (80 – 30) = 80 × s × (50 – 30)

mx × 30 = 1600 s .... (ii)

From (i) & (ii)

250 s + 5 L = 1600 s 5L = 1350 s


L

s
= 270

Q.13 (B, C, D)

A=64mm2, T=2500 K (A=surface area of filament,

T=temperature of filament, d is distance of bulb from

observer, R
e
=radius of pupil of eye)

Point source d = 100 m

R
e
=3mm

(A) P=AeT4

=5.67×10–8×64×10–6×1×(2500)4(e=1 black body)

=141.75w

Option (A) is wrong

(B) Power reaching to the eye

 2
e2

P
R

4 d
  



 
 

23

2

141.75
3 10

4 100

  


=3.189375×10–8W

Option (B) is correct

(C)
m
T=b


m
×2500=2.9×10–3

6
m 1.16 10   

=1160 nm

Option (C) is correct

(D) Power received by one eye of observer

hc
N

 
  

 

N=Number of photons entering into eye per second

3.189375×10–8

34 8

9

6.63 10 3 10
N

1740 10





  
 



N=2.79×1011

Option (D) is correct

Q.14 (8.33)

 4 4
0

dQ
eA T T

dt
   ...(i)

  
4

4 4 0
0 0 4

0

dQ T
e T T T T 1 1

Adt T

  
          
   

4
0

0

T
e T 1 4 1

T

  
     

  

3
0

dQ
eT 4 T

Adt
    ...(ii)

Now from equ. (i)

 4 4
0

dT
ms eT T T

dt
  

 
4 4

0 0

dT eA
T T T

dt ms

     
 

4

4
0

0

eA T
T 1 1

ms T

   
     
   

4
0

dT eA
T .4 T

dt ms


 

3
04 eATdT

e T; K
dt ms

 
   

 

 3
0

K
4 eAT ms

A
  

from equ. (i)

3
0

dQ
e T .4 T

Adt
  

700=(K/A)(ms)T

2

3

700 5 10 50 25
T

10 4200 6 3





 
   



T=8.33

Q.15 (9)
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ELEMENTARY

Q.1 (1)

 
 

1 1

2 2 2

273 20V T 200 293
V T

V T V 273 20 253


     



2

200 253
V 172.6m

293


  l

Q.2 (2)

P MVav,AsVav
  

= 0 (in equilibrium )

avP 0 


Q.3 (2)

The collision of molecules of ideal gas is elastic

collision

Q.4 (3)

one molecule has some single value of speed which is

equal average speed and rms speed of the gas

 V
a
= V

rms
.

Q.5 (2)

V
av


0

1

M

 oxygen molecule hits the wall with smaller average

speed

Q.6 (2)

V
av

=
0

8RT

M , VV
AV
 T

For same temp in vessel A, B and C, Average speed of

O
2
molecule is same in vesselAand C and is equal to V

1
.

Q.7 (2)

As U is a state function i.e., it depends initial and final

position in process A and B initial and final temp are

same.

 U, =U
2
.

Q.8 (2)

T
2

=
2

1
1

V 1.5V
T (273 27) 450K

V V

   
      
  

 177°C

Q.9 (4)

v
rms

= rms

3kT 1
v

m m
 

Q.10 (2)

v
rms  T

Q.11 (3)

0

3RT
V

M


Q.12 (3)

1 1

2 2 2 2

V T V (273 27) 300
V T

V T 2V T T


     

T
2
= 600 K = 327°C

Q.13 (1)

V T (as constant pressure)

Q.14 (3)

Boyle’s and Charle’s law follows kinetic theory of gases

Q.15 (1)

A monoatomic gas molecule has only three

translational degree of freedom.

Q.16 (3)

A diatomic molecule has three translational and two

rotational degree of freedom.

Hence t otal degree of freedom f = 3 + 2 = 5

Q.17 (1)

P

V

C 2
1

C f
   

Q.18 (3)

As compare to gas solid expand very less.

 C
p
is slightly greater then C

v
.

Q.19 (1)
(Q)

v
= C

v
T  (Q)

v
= 1 × C

v
× 1 = C

v

For monoatomic gas  v v

3 3
C R Q R

2 2
   

EXERCISES-I

Kinetic Theory of Gases and Thermodynamics
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Q.20 (4)
Kinetic energy is function of temperature

Q.21 (1)
For cyclic process. Total work done = W

AB
+ W

BC
+ W

CA

W
AB

= PV = 10 (2 – 1) = 10 J and W
BC

= 0

as V = constant
From FLOT,Q =U +W
U = 0 (Processs ABCA is cyclic)

Q = W
AB

+ W
BC

+ W
CA

W
CA
W

CA
= – 5 J

Q.22 (1)

T  P or
P

T
= constant

As
P nR

T V
 = constant or V = constant

 W = 0.

Q.23 (4)

Work done = Area under curve 1 1
1 1

6P 3V
9P V

2


 

Q.24 (2)
As Volume decreases
 pressure of the gas in the cylinder increases

Q.25 (1)

Q = AU + W and W = PV

Q.26 (2)

In process AB

T = constant

P = increases P 
1

V

or V = decreases Q = W .

W = – ve. or

Q = – ve

 heat is rejected out of the system

Q.27 (2)

Q = W

(T = constant)

if heat is supplied then W = +ve

Q.28 (2)

B A

Q = 0

0 = – 30 +U
BA

U
BA

= 30 J

 U
AB

= –U
BA

= – 30 J

Q.29 (2)

Q = U + W ; Q = 200 J and W = – 100 J

U = Q – W = 200 – (– 100) = 300 J

Q.30 (4)

Heat given Q = 20 cal = 20 × 4.2 = 84 J.

Work done W = – 50 J

[As process is anticlockwise]

By first law of thermodynamics U =Q –W = 84

– (– 50) = 134 J

Q.31 (3)

In isothermal process temperature remains constant.

Q.32 (1)

For free expansion

Q = 0, W = 0, U = 0

Q.33 (3)

Q.34 (1)

E

= P

Q.35 (3)
For free expansion
U = 0 or T = 0
 U or T = const

Q.36 (3)
Adiabatic process
Q = 0
For any process


V
= nC

V
T

Hence, option (3) is correct.

Q.37 (1)
Work done

Q.38 (1)

Initial and final states are same in all the process.
Hence  U = 0; in each case.
By FLOT; Q = W = Area enclosed by curve with

volume axis.
 (Area)

1
< (Area)

2
< (Area)

1
 Q

1
< Q

2
< Q

3
­ .

Q.39 (1)

2
max

1

T 300 1
1 1 25%

T 400 4
      

So 26 % efficiency is impossibel



24

Kinetic Theory of Gases and Thermodynamics

JEE-MAIN

OBJECTIVE QUESTIONS
Q.1 (3)

V
av

=
8KT

m
, as T = constant VV

av
= constant

Q.2 (4)

avav VMP


 , as the average momentum of an ideal

gas is zero
 option D is correct.

Q.3 (1)

3RT 3R 273

32 28




T =
273 32

28


= 426.3 k.

Q.4 (2)
Real gas behaves as an ideal gas at low pressure and

high temperature

Q.5 (3)
one molecule has some single value of speed which is
equal most probabla speed and average speed of the
gas
 V

mp
=V

av
.

Q.6 (3)

V
AV

=
0

8RT

M = v

for nitrogen V
AV

=
0

8R 2T

M / 2



 = v .

for nitrogen

V
AV

= 2/M

T2R8

0


= v .

Q.7 (2)

V
av


0

1

M

 oxygen molecule hits the wall with smaller average
speed

Q.8 (2)

V
av

=
0

8RT

M , VV
AV
 T

For same temp in vessel A, B and C, Average speed of
O

2
molecule is same in vessel A and C and is equal to

V
1
.

Q.9 (1)

As translation K.E is =
3

2
nRTT

E =
3

2
PV

where E = total translational K.E.

Q.10 (3)
For an ideal gas, the no of molecules of equal moles of
gas is same .

Q.11 (3)
From the formula

V
rms

=
0

3RT

M

2

2

2o

o

o

rms
M

RT3
V  

V2
M

RT3
2

2/M

2RT3
V

2

2

2

2

o

o

o

o

orms 




Q.12 (2)
The average velocity is given as

πM

RT8
Vav 

Independent of other gases. Hence average velocity

of oxigen in third container will be V
1
only.

= 7.66 u

Q.13 (4)

 
N2

1NN

N

N3.........21
Vavg





 =

2

)1N( 

2 2 2

rms

1 2 ........N 2N 1
V

N 6

  
 

rms

avg

V 2 2N 1

V (N 1) 3





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Q.14 (1)

Average rotational K. E. =
1

KT 2 KT
2

 

So it will be same for both the gases.

Q.15 (1)

We are given P =
2E

3V
.

2
PV E

3


3
E n RT

2
 .

Here E is the Translational K.E. for all the particles.

Q.16 (1)
We know that

PV nRT

 
35 2 31.3 10 7 10 10

PV
n

RT 8.3 273

    
   



So, Number of molecules is

5 3
231.3 10 7 10

6.023 10
8.3 273

  
  


= 23102.4

Q.17 (1)



Pm
= nRTT

slope of T
1

> slope of T
2

 T
1
> T

2

Q.18 (3)
PV = nRT
 temperature remains same for all ideal gas

Q.19 (3)
As the volume remains constant on increasing
temperature pressure becomes double.
V = const.
T = doubled
p = 2P

o

P Ao

2P Ao

TS

APT

AP2APT

oS

ooS





Q.20 (4)

U =
2

kTnfN

2

nfRT A

fkT

U2
= nN

A
= N

Q.21 (2)
As U is a state function i.e., it depends initial and
final position
in process A and B initial and final temp are same.
 U, =U

2
.

Q.22 (4)
As U = nRT
For closed path

T = 0
 U = 0.

Q.23 (4)
As C

p
– C

v
= R

For above equation, we can say that both C
p

and C
v

increase by same amount.

Q.24 (3)

s =
Tm

Q



For changing state
T = const or T = 0
 s = (infinite)

Q.25 (1)
As f = 5

dU = nC
v
dT =

2

nfRdT

C
v
=

2

fR

C
v
=

2

R5

Q.26 (3)
Gas has different specific heat for different processes
 gas has infinite number of specific heats.

Q.27 (3)
U > 0
and W > 0
C > C

v

Q.28 (3)
As compare to gas solid expand very less.
 C

p
is slightly greater then C

v
.

Q.29 (3)

In the final condition.

Let atmospheric pressure is P and ht of liquid column

is h.
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h

48–h

 
1 1 2 2

P h 76

P V P V

76 5 P 43 h

 



  

380 = (76 – h) (43 – h)

h = 38 cm

So, 48 - h = 10 cm = 0.1 m.

Q.30 (1)

P + 50 = 75

P = 25 cm of H
g

25
75

105



= 33.3 kPa

Q.31 (1)

dTnCmv
2

1
v

2 

ΔTR
2

5

.03

m
mv

2

1 2










R

10106

R5

100.03
ΔT

434 







R

60


Q.32 (1)

T  P or
T

P
= constant

As
V

nR

T

P
 = constant or V = constant

 W = 0.

Q.33 (4)

work done on the gas = negative work

W = PdV

when V  decreases

then W = – ve

hence option D is correct.

Q.34 (1)

As volume increases

WD continuously increases

Q.35 (3)

As W = PV

V = same is both process

As P
B

>P
A

 W
2

> W
1

.

As P
B

>P
A

 W
2

> W
1

.

Q.36 (2)


2

1

V

V

PdVW

2

1

V

2

V

aV dV   
2

1

V
3

3 3
2 1

V

V a
a V V

3 3

 
   

 

 1122 VPVP
3

1
  2 1

1 1
nRΔT R T T

3 3
    

Q.37 (1)

Q.38 (4)

U = same is both process

Q
acb

– W
acb

= Q
adb

– W
adb

.

200 – 80 = 144 – W
adb

.

W
adb

= 24 J.

Q.39 (2)

U = Q
acb

– W
acb

= 200 – 80 = 120 J

U = Q
ba

– W
ba

, – 120 = Q
ba

+ 52, Q
ba

= – 172 J.

Q.40 (4)

U
b
– U

a
= 120

U
b
= 120 + 40 = 160J

Q.41 (2)

in db.

W
db

= 0

U
b
– U

d
= Q

db
.

160 – 88 = Q
db

Q
db

= 72J.

Q.42 (2)
BA
Q = 0
0 = – 30 +U

BA

U
BA

= 30 J
U

AB
= –U

BA
= – 30 J

Q.43 (2)

ΔQΔUΔQ 

ΔWΔQΔU 
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U = ΔVPQ o

U = o

2 1

1 1
Q P

 
  

  

Q.44 (4)

133221net WWWW  

1 210 W 0 20  

J30W 21 

1 2ΔU 0 

212121 ΔUΔWΔQ   = 30 J

Q.45 (1)

ΔW3ΔWQΔ 

ΔW4

ΔW ΔW
n 0.25

ΔQ 4ΔW
  

Q.46 (1)
Free Expansion

So, 0ΔT0ΔU
0ΔQ

0ΔW










 1211 V2PVPand 

2

P
P 1

2 

Q.47 (4)
Ist Process

111 ΔWΔQΔU 

KJ42016 
IInd Process

222 ΔUΔQΔW 

 sameΔTΔUΔU 21 

 2So, ΔW 9 4 13KJ     

Q.48 (3)

Q.49 (2)

As PV = nRT m = V = constant or 
V

1
and P

AB T = constant, pressure increases or
volume decreases

BC Volume is constant, V = constant
CD P is decreases or volume increases

[T = constant]
D A Volume is constant V = with constant,

clearly option ‘B’ is constant.

Q.50 (2)
U = 0
 T = constant
or PV = constant or P-V curve is a rectangular

hyperbola.
clearly, option B is correct.

Q.51 (3)

P

nR

T

V


P

1
 slope or P 

slope

1

 P
2
< P

1

Q.52 (4)
In isothermal expansion
T = constant U = 0
W = Q
 option (4) is correct.

Q.53 (3)
W.D. =  × Pressure Radius × volume Radius (area of
ellipse)

W =  








2

P–P 12 








2

V–V 12
=

4


(P

2
– P

1
) (V

2
–V

1
)

Q.54 (2)

LM

P = constant

VT.

MN T = constant

Here, option B is constant

Q.55 (1)
As initial and final state are same

 T
I
= T

F
As V

rms
, avP


and avK


depends on temperature
 all are equal.

Q.56 (2)
In process AB
T = constant

P = increases P 
V

1

or V = decreases Q = W .

W = – ve. or Q = – ve
 heat is rejected out of the system.

Q.57 (3)
Q = W (T = constant) if heat is released then
W = –ve
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Q.58 (4)
dQ = dW + dU
dQ = PdV + dU
dQ = nRdT + dU

dQ =
f

dU2
+ dU 










2

RdTƒn
dU

dQ

dU
=









1

f

2

1

dQ

dU
=

7

5

Q.59 (2)
As Volume decreases
 pressure of the gas in the cylinder increases

Q.60 (1)
AB isothermal
P

A
V

A
=P

B
V

B
...(i)

BCAdiabatic
P

B
V

B
 = P

C
V

C
 ...(ii)

CD Isothermal
P

C
V

C
= P

D
V

D
...(iii)

DAAdiabatic
P

D
V

D
=P

A
V

A
 ...(iv)

From (i), (ii), (iii) and (iv)

B A

C D

V V

V V


Q.61 (1)
For adiabatic
T V–1 = C (> 1) ....(i)
For isothermal T = const ....(ii)
From (i) and (ii)
T

2
< T

1

Q.62 (3)
For isothermal

PV = C . or

1
1

V

1
P  ...(i)

For adiabatic

PV = C,



2V

1
P2 ...(ii)

from (i) and (ii)
P

1
> P

2

Q.63 (1)
As W.D. by gas in isothermal is more as compare to
adiabatic process
 W

2
< W

1

Q.64 (3)

Isothermal P
V

1

Adiabatic P  V

1

Also, slope of adiabatic is more as compare to
isothermal
 option (3) is correct.

Q.65 (3)
Adiabatic process
Q = 0
For any process
U = nC

V
T

Hence, option (3) is correct.

Q.66 (4)
B = P (for adiabatic process)
B = 1.4 × 1 × 105 = 1.4 × 105 N/m2

Q.67 (2)

B =
dV

VdP
= –

dV

)PdV(
(for isothermal process)

B = P

Q.68 (2)

Slope = –
dV

dP

As slope of A > slope of B
  of A >  of B
or AHelium

B  Hydrogen

Q.69 (3)
For free expansion
U = 0 or T = 0
 U or T = const

Q.70 (1)
For free expansion
Q = 0, W = 0, U = 0

Q.71 (1)

P

dP
= – 

V

dV
(For adiabatic)
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0.5 = – 1.4
V

dV

Volume decrease by 0.36%

Q.72 (4)
XY Adiabatic compresion
YZ Isothermal Expansion
ZX Compression at constant pressure

Q.73 (1)
Self explainatory

Q.74 (1)
As W.D. is isobaric > W.D. in Isothermal > W.D in
adiabatic
or W

2
> W

1
> W

3

Hence option (1) is correct.

Q.75 (1)
Process ...(1) is isobaric

U
1
= Q – W = positive

process (2) is isothermal
U

2
= 0

Process (3) is adiabatic
Q = 0
U = – W = negative

 U
1
>U

2
>U

3

Q.76 (1)
As Q = U + W

U = –W (given)
orQ = 0

 Process is adiabatic

Q.77 (4)
For polytropic process PVx = k;

C = C
V

+
x1

R


As PV2 = K (given)Put x = 2

C = C
V

+
2–1

R
= C

V
– R.

C < C
V

.

Q.78 (3)
PT = constant










nR

PV
P = constant

P2V= constant. Therefore the graph C is suitable.

Q.79 (1)
From the graph shown.

avV T PV 

321 avavav V:V:V

oooooo PV4:P4.V:PV

1 : 2 : 2

Q.80 (2)
From ideal gas equation
PV= nRT

PV =
m

M
RT

V

T
=

mR

MP
= C

B

In second case

V

T
=

2mR

M

Q.81 (3)

PV = constant

1dP dV
V PV 0

dV dV
   

1dP PV P

dV VV





 
 

50.7 10
1.4

0.0049


  

7102

Q.82 (1)

K
V

P
KVdVPdVΔW

2

1

2

1

V

V

V

V

  

2

VPVP

2

KVKV 1122

2

1

2

2 





  000 RT
2

3
TT2R

2

3
ΔU 

ΔWΔUΔQ  0RT2

Q.83 (4)

PV K 

lnP ln V ln K  

Differentiate both sides

   d lnP d lnV 0  

 
 

d lnP

d ln V
 
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B A    B is monoatomic

Gas A is diatomic

Q.84 (1)

1 1
1 1 2 2T P T P   

1

1
2 1

2

P
T T

P


 

  
 

4
1

3
4

3
1

300
4



 
  

 
2300

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q.1 (C)

P

P + dP
dx

x

for dx

PA

dx

dmg

(P + dP) A

g

PA – dmg – (P + dP) A = dmg
– AdP = 2dmg

– AdP = 2A dx g

– dP = 2 g dx. Where  =
m

V

PV=
m

M
RTT

PM

RT
=

m

V

 =
RT

PM

–
2PM

dP .g.dx
RT



o

o

P' x H/2

P o

2Mg
dP /P dx

RT



  

0

0

P 2Mg H
ln .

P ' RT 2
 

MgH/RT0

0

P
e

P '


Q.2 (D)
For an ideal gas
C

P
– C

V
= R

If C
P
– C

V
= 1.09 R.

or p
A

> p
B

T
A

< T
B

Then gas will be real . Thus pressure is high and
temperature is low for real gas.

Q.3 (D)

C
P

= 3.5 R (At STP)

As temperature increases, vibrational degree of freedom

becomes 2 at higher temperature.

C
P
=

2

9
R = 4.5 R

Q.4 (B)

Average velocity will be same for same temperature.

Q.5 (D)
Work done by gas = Area under P-V diagram

=
2

)2–4()3–4(
+

2

)5.2–3()1–2(

=
2

5.2 
=

4

5 
atm L

W = – 






 

4

5
atm L (Work done by gas is negative as

cycle is anticlockwise)

Q.6 (D)

(p
0
, v

0
)(p

0
, 2v

0
)

U
1
= TnR

2

3
 ; U

2 TnR
2

5


U
2
> U

1
; W

1
= W

2

Q
1
– Q

2
= U

1
– U

2

U
2
+ W

2
> U

1
+ W

1

Q.7 (C)
From the graph shown the equation of line is

P – P
0
=  

0
0

0

0 0

P
P

2 V V
2V V

 
 

 
 

 
 

P – P
0
=

0

0

P

2V


(V – V

0
)

P =
0

0

P V

2V


+

03P

2

Now we know PV = nRT

0
0

0

P V3
P V nRT

2 2 V

 
    

 

For maximum temperature
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0
0

0

P VdT 3
0 P 0

dV 2 V
   

0V
2

3
V 

nR

1
.V

2

3
V

2

3
.

V2

P
P

2

3
T 00

0

0
0max 










0 0

3 3 1
P . V .

4 2 R
 0 09P V

8R


Q.8 (B)

Initially

1 1

12
PV R T

M


or    7273R
M

12
104P 3  

..... (1)

4

2 2

m 12
6 10 gm/cc

V V
    

   
3

2

4

12 12
P 10 R T

M6 10





 
  

 
..... (2)

21from 

T

7273
106

1012

104 4

6

3 




 





 T = 1400 K

Q.9 (D)

ΔQΔUΔQ 

PdVTRΔ
2

f
nTCΔ2 

5
2CΔ T 2 RΔT PdV ___(1)

2
  

K
V

PT2



3
3 2

2

T K K
or T V

nR nRV
  

VdV2
nR

K
dTT3 2 

dV
nR

K
dT

V2

T3
or

2



(2)____dV
nR

P
dT

2

3


From (1) and (2)

dT
2

3
nRTRΔ5TCΔ2 

2C = 5R + 3R
2C=8R
So, molar heat capacity C = 4R

Q.10 (B)

ΔTR
2

f
nΔU 

For Isobaric process 1 1
1 1

P V
V T

nR
 

At
 1 1 1

2 2

P V / 2 T
V T

nR 2
  

(1)_______
2

T

2

nfR
ΔU 1

P 









_______(2)0ΔUIsothermal T 

Adiabatic PV K 

1TV K 

1
1 2

1 1
2 1

T V 1

T V 2



 
 

1 1
2 1

T
T 2 T

2
 

1 1
Adiabatic

TF
ΔU n R 2

2 2
   

   1
adiabatic pΔU ΔU 2 _____ 3

Q.11 (A)
For larger n, pressure will be smaller, so work done will
be smaller for larger n.

Q.12 (B)
V = kT2/3

dV =
3

2
3

1
–

Tk d T

W = PdV =  V

nRT
dV

= R  V

T
dV = R 

3

2

3

1
–

KT

TdTKT

3

2
=

3

2
R (T

2
– T

1
)

=
3

2
R (30) = 20 (8.31) = 166.2 J

Q.13 (C)

VPn = constant.

dV Pn + VnPn–1 dP = 0
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–
dV

VdP
=

n

P
= bulk modulus

Q.14 (C)

V = k

33.0

VT

nRT









V1.33 = const

V = const

 proceses is isochoric

Q.15 (A)

Correct graph is shown in option (A)

Process 1–2 adiabatic process, Process 2–3 Isochoric

process, process 3–1 Isothermal process.

Q.16 (A)

For adiabatic process

PV
1
 = P

A
V

2


P
A

= P














2

1

V

V
......(1)

For isothermal process
P V

1
= P

B
V

2

P
B

= P
2

1

V

V
.....(2)

From (1) and (2)
P

A
< P

B
[For expansion V

2
> V

1
]

and by PV = nRT
T

A
< T

B

Q.17 (A)
(P = constant)

W

Q




=

TnR

TCn P




=

R

CP
=

2

5

Q.18 (D)
Process AB is isobaric [VT]
T

B
>T

A

 U
B

> U
A

W
BC

< W
AB

(Area under P-V curve)

Q.19 (A)
dW = dQ – dU
dW = nCdT – nC

V
dT

W = CdT –  dTCV

=  dT
T

a
– C

V
T

= a ln 








 

0

0

T

T
–

1–

R)T–T( 12



W = a ln 
1–

RT)1–(– 0





Q.20 (A)
T = T

0
+ aV3


nR

PV
= T

0
+ aV3

 P = nR 







 20 aV

V

T

For minimum P,
dV

dP
= O

 2
0

V

T–
+ a 2V = 0V =

3

1

0

a2

T









Q.21 (D)

P = R 







 20 aV

V

T
and V =

3

1

0

a2

T









 P =
2

3 3

1

3

2

0
3

1

2TRa














Q.22 (D)

Process
12

and Process
34

are isochoric process.

W
12

= 0

W
34

= 0

W
23

= n R (T
3
– T

2
)

= 3 R (2400 – 800) = 4800 R

W
41

= nR (T
1
– T

4
)

= 3 R (400 – 1200) = – 2400 R

W = (4800 – 2400) R = 2400 R

= 20 kJ

Q.23 (D)

smr

sound

V

V
=







P3

P

=
9

5
=

3

5
[Monoatomic gas]

PT = const

P2V = const  PV1/2 = const

 x =
2

1
C = C

V
+

x–1

R
=

2

3
R + 2R =

2

R7
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Q.24 (C)

P

V

A

B

PV = Const
Slope of B > slope of A
n >B n

m > m
A

B A

Q.25 (D)

v
f
= v

0

W
gas

= RT
0
n

W
atm

= pdv = pv ( – 1) = RT
0
( – 1)

At constant temperature U = 0

Q.26 (A)

PV = nRTAlong AB V TT

Along BC P T

Along CA
)v/1(

p
= const U = const

  ve)v/v(nk
v

kdv
Pdvw fi

Q.27 (B)

2

P nRT

V V


so K1200T
4

1

kv

kv

T

T
22

2

2
1

2

1 

T = 1200 – 300 = 900 K

U = 2 × 3/2 R × 900 = 2700 R

By energy conservation, energy loss by one molecule
is equal to gain by other.

Q.2 (A,B)

avVMP


 ,As avV


= 0 (in equilibrium)

 avP


= 0

Q.3 (A,B,C)

Avg. momentum/mol 
2

xV

NTPatsameisV
2

x
  T.E.K avg 

  T./vol.E.K 

Q.4 (B,D)

v
rms

= 1.73
m

KT

so v
rms

does not change

1 2 1

1 2 2

P P n 1

n n n 2
  

Q.5 (A,B)

Q TnR
2

f


13.81

2.432
f














3.8R

1n

T = 1

3
3.8

2.46





The gas must be monoatomic.

Q.6 (A,D)

;
28

7
n1  n

2
=

44

11

So
2

1

4

1

4

1
nn 21 

kg36
)2/1(

kg18
m0 

Vmix

1 5 1
R 3R

114 2 4C R
1 1 4

4 4

  
 



Pmix

11 15
C R R R

4 4
  

35

47

33

45

11

15

C

C
r

V

P 

Q.1 (C,D)
MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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Q.7 (A,B,C,D)
Specific heat of a substance can be finite, infinite,
zero and negative.

Q.8 (A,B)
C

P
> C

V

and C
P

– C
V

= 2
 option A and B is correct.

Q.9 (A, B, D)

T =
nR

PV

 initial and final temperature are equal

as U =
2

RTnf

 U
initial

= U
final

.

Also the net work done by an ideal gas in the process

may be zero.

Q.10 (A,D)

For equilibrium of piston

PS = Kx
0

P =
S

Kx0

For piston

W
all

= KE
2
– KE

1

W
gas

–
2

1
kx2 =

2

1
mv2

W
gas

=
2

1
kx2 +

2

1
mv2 = positive

Q = 0

Q = U + W

U = – W = negative

As internal energy of gas decreases

 temperature of gas decreases.

Q.11 (A,B,C,D)

For any process U = n C
V
T,

For IsothermalT = 0

or U = constant

Q = 0 (For adiabatic process)

 U + W = 0

U = – W

Q.12 (A,D)

2P
C




2 2
1 2

1 2

P P


 

2 2
2 2

1 P
P P P

2 2
    

m V
PV RT RT

W W


  

R
P T

W
   P

1
= 

1
T

1
R/W

P 2
= 

2
T

2
R/W

1 1 1

2 2 2 2

P T T
2 2

P T T


  


T
2
= T2



2TR P PTR
P C

W W
    



1
P

T
 

Q.13 (C,D)

As the process is carried out suddenly it may be

adiabatic and as the conductivity is good enough then

may be isothermal.

Q.14 (C,D)
In adiabatic process

0U 

0T 
PV = constant

Q.15 (B,D)

W
A

= P
1
V

W
D

= P
2
V {P

1
> P

2
}

Q
A
=U

A
+W

A

Q
D

= U
D

+ W
D

Q
A

– Q
D

= U
A

– U
D

+ W
A

– W
D

Q
A

– Q
D

= W
A

– W
D

{U
A

=U
D

Q
A

> Q
D

W
B

= PdV =  
2

1

v

v 1

2

v

v
nkdv

v

k


W
C

= kn
1

2

v

v

hence W
B

– W
C

= 0 Q
B

> Q
C
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Q
A

> Q
B

> Q
C

> Q
D

Q.16 (B,D)
in cyclic process.
U = 0
Q = W as W = + ve
 Q = +ve
or Net heat energy has been supplied to the system.
in process CA

W = 0 U = –ve (As
T = decreases)
 heat energy is rejected out by system
Teperature at C is maximum

Q.17 (C,D)

U = Q – W is same in both methods as it is a state

function

Q.18 (A,C)

in cyclic process U
1
+ U

2
= 0

U
Net

= 0

Q – W = 0

Q.19 (A,B)

Q = U + W  25 =
2

TnfR
+ 0

25 =
32

225f1





f = 3 (monoatomic)

Q.20 (A,B)
A  B constant pressure
B  C T = constant
C  D constant Volume
D  A T = constant
 clearly, option A and B are constant

Q.21 (A,C)

W = PdV. then W = –ve

As pressure and volume both decreases

 temperature of system decreases

Q.22 (C,D)
From information, the process may be very nearly
adibatic. Hence option (C) is correct.

Q.23 (C,D)
U = 0 (Adiabatic)
U = const
nC

v
T = const

As O
2
and N

2
are diatomic, so there temp are equal but

is different from He
For adiabatic PV = const
For O

2
, N

2
value of  is same

 pressure of O
2
, N

2
remains same but different from

He

Q.24 (B,C)
Slope of × > slope of y
During expansion

W
y

> W
x

U
y
> U

x


12 vv CC 

f
2
> f

1

Q.25 (A,B,D)

 =
1

21

1 Q

Q–Q

Q

W

P/

P/0




 = 1 –
1

2

Q

Q
.

Q.26 (C)

Heat given : TCnQ
1V1   For gas A [As V =

constant  dW = 0]

& for Gas B & Q = TCn
2V2 

( For same heat given, temperature rises by same
value for both the gases.)


21 V2V1 CnCn 

................(1)
Also, (PB)V = n2RT and (PA)V = n1RT


2

1

n

n
=

B

A

P

P




=

5.1

5.2
=

3

5

 n1 =
3

5
n2

Substituting in (1)

2n
3

5
1VC =

2v2Cn


)R(

)R(

3

5

C

C

2
3
2
5

1

2

v

v


Hence, Gas B is diatomic and Gas A is monoatomic.

Q.27 (D)

Since n1 =
3

5
n2 Therefore

AM

125
= 









BM

60

3

5

(From experiment 1 : WA = 125 gm & wB = 60 gm)
 5MB = 4MA

The above relation holds for the pair–Gas A : Ar and
Gas B : O2 .

Q.28 (B)
No. of molecules in 'A' = nNA

=
40

125
NA = 3.125 NA
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(Since n =
40

125
for Ar)

Q.29 (C)
Internal energy at any temperature T
= nCVT

= 
















2

R3

40

125
(300)

[ CV for mono atomic gas =
2

R3
]

 Ui = 2812.5 cal.

Q.30 (B)
Let initial temperature and volume be T0 and V0. Since
the process is adiabatic, the final temperature and
volume is TV –1 = T0V0

–1

( =
3

5
for mono atomic gas)

 T =
3

2

0

0
0

8/V

V
T 










= 4T0

 percentage increase in temperature of gas is

0T

T
× 100 =

0

0

T

T3
× 100 = 300%

Q.31 (C)

Adiabatic Bulk modulus B = – V
dV

dP
= P = 

V

nRT

 T

V

V

T

B

B

0

0

f

i  =
0

0

0

0

T4

8/V

V

T
 =

32

1

Q.32 (B)
For adiabatic process dQ = 0

 dU + dW = 0 or
dU

dW
= –1

Q.33 (A)
In free expansion, temperature of the gas remains
constant, therefore
p0 v0 = p. 3v0

where v0 = initial volume.

p =
3

p0

Q.34 (A)

For adiabatic compression, initial conditions are
3

p0

and 3v0 . Final volume and pressure arev0 and 32/3 p0.

3

p0
.(3v0)

 = 32/3 p0(v0)
  3–1 = 32/3

or  – 1 =
3

2
  =

3

5

i.e. gas is monoatomic

Q.35 (B)
KEavgT
Applying TV – 1 = K for adiabatic process –
T1 V1

 – 1 = T2 V2
 – 1

3/2
13/5

0

0

1

2

1

1

2 3
v

v3

V

V

T

T


























Q.36 (A) p,r,s (B) q (C) p,r,s (D) q,r
(A) If P = 2V2 , from an ideal gas equation PV = nRT we
get

2V3 = nRT

 with increase in volume

(i) Temperature increases implies dU = +ve

(ii) dW = +ve

Hence dQ = dU + dW = +ve

(B) If PV2 = constant, from an ideal gas equation PV =

nRT we get VT = K (constant)

Hence with increase in volume, temperature decreases

Now dQ = dU + PdV = nC
v
dT –

T

PV
dT [ dV = –

T

V
dT]

= nC
v
dT –

T

PV
dT = n(C

v
– R) dT

 with increase in volume dT = –ve

and since C
v
> R for monoatomic gas. Hence dQ = –ve

with increases in temperature dV = –ve,

 W = –ve

(C) dQ = nC dT = nC
v
dT + PdV

 n (C
v
+ 2R) dT = nC

v
dT + PdV

 2nRdT = PdV 
dT

dV
= +ve

Hence with increase in temperature volume increases

and vice versa.

 dQ = dU + dW = +ve

(D) dQ = nC dT = nC
v

dT + PdV

or n (C
v
– 2R)dT = nC

v
dT + PdV

or – 2nRdT = PdV


dT

dV
= –ve
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 with increase in volume temperature decreases.

Also dQ = n(C
v
– 2R)dT

For expantion dT = –ve but C
v

< 2R for monoatomic

gas. Therefore dQ = +ve

with increase in temperature dV = –ve,

 W = –ve

Q.37 (A) p, s (B) s (C) p, s (D) q, r

(A) PV = nRT

P = (nRT)
V

1
= (constant)

V

1
, P

V

1

T = constant i.e. isothermal process

As
V

1
decreases or V increases

 W = positive

and Q = U + W = W > 0 (U = 0)

(B) Q = 0 and V = increases

 W = positive

(C) PV= nRT V  T (P = constant)

As volume increases, T also increases

i.e., U > 0

and W > 0 So Q > 0

(D) For cyclic process U = 0

W < 0 (anticlockwise)

Q =U +W < 0

NUMERICALVALUE BASED
Q.1 [435]

Process A B

WAB =  dvP =  dvT
2

3 2/1

= 
 dTRT

3

1
T

2

3 2/12/1

On solving, WAB = 50 R = 50 × 8.3 = 415 J
Process B  C

U =
2/1V

2

1

RT
2

3
=

2/1V
2

1

 3PV1/2 = 1

 P =
V3

1

Now WBC =  dvP = 
1600

100

dv
V3

1
= V

3

2

= ]1040[
3

2
 = 30

3

2
 = 20 J

Total W = 415 + 20 = 435 ]

Q.2 [0005]
Temperature is constant

 E = 0, dW = nRT
v

dv
= nRT

2/AL

Adx

Q =E + W


dt

dW
=

2/L

nRT

dt

dx

dt

dW

dt

dQ


 k
900

1

L

T
=

L

nRT2









dt

dx


dt

dx
=

nRT.900

27k

=
30031.85.0900

2275.415




=

200

1
m/s = 5 mm/s

Q.3 [0002]
Q = 7J

Q = DU + W
7 = nCvT + PdV

= n
2

5
RT + nRT

7 =
2

7
(nRT) nRT = 2 J

Q.4 [0075J]

V =
2

f
nRT =

2

5
(P2V2 – P1V1) = 63 J

mgx +
2

1
kx2 + P0Ax = gas

gas = 12 J
 Q = 75 J
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Q.5 [2400]
At B and C (T

B
= T

C
)

B

BB

T

VP
=

C

CC

T

VP

B

AB

T

VP
=

C

AC

T

V3P

P
B

= 3P
C

for lineAC PV (straight line through origin)

so
A

C

P

P
=

A

C

V

V
=

A

A

V

V3

P
C

= 3P
A

Thus P
C

= 3P
A

; P
B

= 3P
C
= 9P

A
.....(I)

V
C
=3V

A
;V

B
=V

A

T
A

=
nR

VP AA
.....(II)

from A to B ; sochoric P  T 
so T

B
> T

A

for C to A ; both (P, V)  so T 
Thus from B to C ( we could have maximum tempera-
ture)
P = aV + b

 P = 














A

A

V2

P6
+ 12 P

A

 P = –

A

A

V

VP3
+ 12 P

A

PV= nRT

VP12
V

VP3
A

A

A













 = nRTT

for T
max dV

dT
= 0

A

A

V

P6
V+12P

A
=0

V=2V
A
P= 6P

A

T =
nR

)V2(P6 AA
=

nR

VP12 AA

T
max

= 12 T
A

= 2400 K

Q.6 [3]
w = m

w
gh

Q =
2

7
× m

w
gh

=
2

7
× 74 × 9.8 × 1.2 3 × 103 J

 n = 3

Q.7 [1]

F =
RT

PVg
(M

air
– M

gas
)

Heair

Hair

He

H

MM

MM

F

F
22






= 1.08

Q.8 [2]

dt

d
=

eqR

0–100
; T

B
= 40°C, T

D
= 60°C

Q.9 [1]

2/R

T–40

H
= 2/R

20–T

H
+ 4/R

0–T

H

T = 15°C

4/R

0–T

H
= i

H
i

H
= 6 J/s

Heat supplied = 6 × 5.6 × 104 = 3.36 × 105 J In5.6 ×104s.

amount of ice mL
f
= 3.36 × 105

KVPY

PREVIOUS YEAR’S
Q.1 (B)

V
T

0.5 atm

V
T

1 atm

After opening of at equilibrium temperature and
pressure of whole gas is T

1
and P

1

1 2

1 V 0.5 V 4
n , n

RT RT

  
 

n
1

+ n
2

= n

15VPV V 4

RT 2RT RT


 

1

1

5VP3V

RT RT


1

1

P 0.6

T T

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Q 0, W 0   

U = 0
n

1
C

v
T + n

2
C

v
T = (n

1
+ n

2
) C

v
T

1

T
1
= T

1P 0.6

T T


P
1
= 0.6 atm

Q.2 (C)
PV = N × K × T
where K is Boltzmann constant
105 × 100 = N × 1.38 × 10–23 × 273

27N 3 10 

Q.3 (B)
Pressure of gas is app. same everywhere in the vessel

Q.4 (B)
Mole conservation
n

1
+ n

2
= n

n1 n2

V V

Initial no. of moles = n
1
= n

2
=

n

2

finally when temp of 1 vessel is T & another is 2T

n
1

=
PV

RT

n
2

=
1

2

nPV 2

R2T n 1
 

n
1

+ n
2

= n

n
1
=

2n

3
; n

2
=

n

3

mass of gas  n
1


2

1

n
M 23

nM 3
2

 

Q.5 (A)

n=

5PV 10 1
40

25RT
300

3


 



N = 40 ×6.023 ×1023 =24 ×1024

Average sep. =

1
31

1nm
n

 
  

Q.6 (A)

V
rms

=
0

3RT 3kT

M M


P = N × 2mV
rms

1.01 × 105 = N × 2 × 5 × 10–27 × V
rms

N =

5 27

27 23

1.01 10 5 10

2 5 10 3 1.4 10 293



 

 

    

= 6.43 × 1027

Q.7 (B)

energy conservation

eq1 2
1 2 2 1 2

ff f
n RT n RT (n n )RT

2 2 2
  

1 1 2 2
eq

1 2

f n f n
f

n n






 1 2

eq 1 2 1 1 2 2

n n2 2 2

y 1 n n y 1 n n y 1

     
      

         

put n1 = 1 and n2 = n

 n = 2

Q.8 (D)

PV = n1R 300 and (4V) (5P) = n2R 400 .....(1)

 gas will move from high pressure to law pressure

means C2 to C1

after long time final pressure P0

P0V = n'1 R300 and P0(4V) = n'2 R(400) .....(2)

now n1 + n2 = n'1 + n'2

 0 0P V 4P VPV 5PV

R300 R100 R300 R400
  


P

3
+ 5P = 0P

3
+ P0


16P

3
=

04P

3

 P0 = 4P

Now,

0
'
2

' 01

4P V
n R400 3

P Vn
R300

 

Q.9 210 g + inVg = 0Vg

in= density of air inside the balloon

o = density of air outside the balloon
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o in
3

210 210

4V
r

3

   



3
0 in

PM 1 1 210 3

R T T 4 r

  
  

 

 
3 5 3

0 in

1 1 630 8 8.31
0.0007

T T 10 30 104 11.7



   

 

Tin 384 = 111°C

closest answer the option (C)

Q.10 (B)
PV=C
P1–T = C
(0.28)1– × (233) =11–×T

 =
7

5

(0.28)1–7/5 × (233)7/5 = 11–7/5 × T7/5

T7/5 = 2337/5 × (0.28)–2/5

T =  
2/7

233

0.28

T is coming
more than 298 K or 25°C
 T is more than 25°C

so to cool it an extra ac is required.

Q.11 (A)

gas vacuum

expansion is against
vacuumW = 0
Insulated container Q = 0
first law of thermodynamics
Q = W + U
0 = 0 +U
0 = 0 +U

U = 0

Q.12 (C)

P

V

Wi

Wa

2V
V

W
i
> W

a
> 0

Q.13 (A)

1 1 2 2

1 2

P V P V

n n


1
1 1

1 2

V
P

P V 3
n n

  n
2

=
1n

3

Now,
2

3
of Gas will come out to make the presence P

1

Hence 66.66%

Q.14 (D)
Q

12
=W

12

P

V

1

2

3

W
total

= W
12

+ W
31

10 =W
12

– 20
Q

12
= W

12
= 30 J

Q.15 (C)
from graph

Q.16 (B)
For adiabatic process
PV=C

PV–1 +
dp

v
dv


= 0

P = –V
dp

dv
Hence n = 1

Q.17 (A)

Q.18 (B)
PV2 =C


2nRT

V C
V

 
 

 

TV = C T
1
V

1
= T

2
V

2

 If temperature increases, volume decrease and vice
versa.
V

2
> V

1
then T

2
< T

1

Q.19 (D)

Monoatomic gas
5

3
  
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n = 1
PV3 = C on comparing with PV = C
Here= 3
Heat capacity

R R
C

1 1
 
   

R R
C

2 (2)

3

 
 
 
 

3 1
C R

2 2

 
   

C = R

Q.20 (B)
Ideal gas equation PV = nRT
For isobaric process

nR
V

P

 
    T (VT(straight line))

Slope of line =
nR

P

 
  

1
slope

P


slope
3
> slope

2
> slope

1

P
3
< P

2
< P

1

Q.21 (A)
[Note : No. of mole of gas is not given, we have assumed
no, of mole = 1]

PV
T

R


2

4

6

V(lit)

P(atm)



2

2cos

2
si

n


2 4 6

T will be maximum when PV is maximum

   4 2sin 4 2cosPV
T

R R

   
 

As sin and cos both
can not be equal to 1 for same value of 

T can not be
36

R

T
max

should be less than
36

R

curve

Isothermal curve
of temp. = 24

R

i

24
T

R


f

24
T

R


P

V

curve is above isothermal curve

 temp. is more than
24

R
on the given process

So T
max

lie between
24

R
and

36

R

only one option is present

Q.22 (A)
Adiabatic process
TV– 1 = C

2
1

f
  

2

fTV C

V

f R 3R(1 aRT)
C

2 2


 

aRTf R 3Re

2 2


aRT

2 2

f 3e


2

3eaRTTV C

aRT3e

2TV C

3
aRT2Ans. given is TV e So no option is matching may

be due to printing mistake.

Q.23 (C)
As dimension of hole is very small than mean path,
then at equilibrium effusion rate of gas in both direction
must be equal.

hole
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1 2

1 2

P P
For this

T T


Mean free path
T

P


1 1 2

2 2 1

T P

T P


 



21

2 1

TT

T T


1 1

2 2

T 150
0.7

T 300


  



Q.24 (A)
In sudden expansion gas do not get enough time for
exchange of heat.
Process is adiabatic.

Q.25 (A)

a

b c

d

bc Isothermal process so U remain constant
cd  Isentropic process so S remain constant

b c

a d

U

V

bc should be straight line parallel to & cd graph should

be

c

d

Q.26 (D)

1m3 10m3V1
V3

T
T2

T1

2 / 3

1 2

2 1

T V
1 1

T V

 
     

 

2 / 3

1

1 1

4 V

 
   

 
 V

1
= 8 m3

Q.27 (A)

U =
5 5

PV c nRT C
2 2

  

f = 5  = 7/15
PV7/5 =constant  P5V7 = constant

Q.28 (C)
(A), (B) & (D) are wrong and (C) is correct

Q.29 (D)
U = f/2 (P) V = 250 J

Q.30 (B)

W = nRT In
2

1

V nR T

V 1

  
 

  

and r 1 1
2 f fTV T V 

1

1f
2 f

T
V V

T

 
  
 

V
2
is greater for monotonic

Q.31 (A)
W = –
U = 0
Q = –

Q.32 (A)

PV2 = B = constant

& PV= nRT

 nRTV =  = costant

from initial condition of T & V

 = 0.073 pa – m6

Q.33 (B)

in

W

Q
 

inW Q  

Q C dt 
For maximum amount of work, efficiency should be

maximum, means we have to assume carnot engine.
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2

1

T 200
1 1

T T
   

400

in

600

200
W nQ 1 CdT

T

 
     

 
 

 400

600
C T 200 nT   

W C 200 n 200
2

  
      

  


C = 1 (Given)

W = 200 –
3

200 n
2

 
 
 



3
W 200 1 n

2

  
    

  


Q.34 (B)

isobar

adiabat

isotherm

P

V
T1

T2

P2

T1P1

P

P

C

C – R
 

P PC C – R  

R ( – 1)C
P

P

R
C

–1






Work done

Heat supplied
 

1
P

2

P

P
nC T – nRT n

P 1

nC T 2

 
  

   




nC
P
T = 2nRTn

1

2

P

P

1–

1 1

2 2

P T

P T

 
   

   
   

2 1

R
(T – T )

–1




= 2RTT

1
n

1–
1

2

T

T



 
 
 

T
2

–T
1

= 2T
1
n 2

1

T

T

 
 
 

x – 1 = n(x2)

x2 = ex–1

Option (B)

Q.35 (A)

For ideal gas

PV= nRT

(n = 1), so PV = RT

PV =8.314 T

Slope of continuous line should be greater than dotted

line

JEE-MAIN

PREVIOUS YEAR’S

Q.1 (1)

dU = nCVdT = n
5

2
RdT

dQ = nCPdT = n 
7

2
RdT

dW = nRdT = nRdT
dU : dQ : dW

n
5

2
nRdT : n

7

2
RdT : nRdT

5 : 7 : 2

Q.2 [3600]

f = 3
30m/sec

v = 0

ki + ui = kf + uf

1

2
mgas v2 +

f

2
nRTTi = 0 +

f

2
nRTTf

3

2
nR(Tf – Ti) =

1

2
mgas v2

3

2
(1) R[T] =

1

2
(4) (30)2

T =
1200

R
=

x

3R
 x = 3600

Q.3 (3)
Maxwell's Boltzmann distribution curve is always drawn
for no. of molecules (N) vs velocity of molecules. so
statement-1 is false.
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T.K.E. of diatomic molecule =
3

2
KT

R.K.E. of diatomic molecule =
2

2
KT

Statement-2 is false.

Q.4 [2.55]
using energy conservation

f

2
2 4.5 +

f

2
3  5.5 =

f

2
P  10

2 
9

2
+ 3 

11

2
= P  10

18 33

2 2
 = P  10

P =
51

20

P = 2.55 atmosphere

Q.5 (3)
U = 3 PV + 4

f

2
PV = 3 PV + 4

f = 6 +
8

PV

f > 6 Polyatomic gas.

Q.6 [400]

Vrms =
0

3RT

M

200 =
0

3R 300

M



x

3
=

0

3R 400

M



200 3

x 4

3



200 3

x
=

3

2

X = 400 m/s

Q.7 (1)

R

2
= f

Q.8 (3)

PV = (n
1

+ n
2

+ n
3
)RT

16 28 44
P V RT

32 28 44

 
     

1
PV 1 1 RT

2

 
    

5 RT
P

2 V


Q.9 (4)

 
 2

A

RT

2 d N P

=102 nm

Q.10 (1)
Since each vibrational mode has 2 degrees
of freedom hence total vibrational degrees of
freedom = 48
f = 3 + 3 + 48 = 54

= 1 +
2

f
=

28

27
= 1.03

Q.11 (2)
Let the final temperature of the mixture be
T.
Since, there is no loss in energy.
U


1F

2
n

1
R T +

2F

2
n

1
R T = 0


1F

2
n

1
R (T

1
– T) +

2F

2
n

2
R (T

2
– T) = 0

T =



1 1 1 2 2 2

1 1 2 2

F n RT F n RT

F n R F n R 



1 1 1 2 2 2

1 1 2 2

F n T F n T

F n F n

Q.12 (2)
(2) f = 4 + 3 + 3 = 10
assuming non linear

=
p

v

C 2 12
1

C f 10
   = 1.2

Q.13 (1)
Energy associated with each degree of free-

dom per molecule =
1

2
k

B
T..

Q.14 (3)
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Vrms =
3RT

M

Vavg =


8 RT

M


rms

avg

v 3
v 8

Q.15 (4)

Q.16 (1)

Q.17 (3)

Q.18 (3)

Q.19 (4)

Q.20 (3)

Q.21 (1)

Q.22 (3)

Q.23 (1)

RMS

W

3RT
V

M


At the same temperature RMS

W

1
V

M


V
H

> V
O

> V
C

Option (1)

Q.24 (3)
PV= nRT

400 × 103 × 100 × 10–6 = n
25

3

 
 
 

(300)

2
n

25


n = n
1

+ n
2

1 2M M2

25 2 32
 

Also M
1

+ M
2

= 0.76 gm

2

1

M 16

M 3


Q.25 (1)

Q.26 (3)

Q.27 [500]
Given
Translation K.E. of N

2
= K.E. of electron

3
kT eV

2


3

2
× 1.38 × 10–23T = 1.6 × 10–19× 0.1

T = 773k
T = 773 – 273 = 500°C

Q.28 [50]
PV–3 = K
PVx =K
X = –3

W = –
nR T

x 1

 
 

 
= –

nR(200)

3 1

 
   

= 50 (nR)

Q.29 (2)
PV1/2 = C
 TV–1/2 = C

C
V

T



1

1

T

V =
2

2

T

V



2

2

1

T

T

 
 
 

=
2

1

V

V = 2


2

1

T

T = 2

Q.30 [208K]

in

W

Q =
1

4
= 1 –

2

1

T

T

2

1

T

T =
3

4
.....(i)

in

W

Q =
1

2
= 1 –

2

1

(T 52)

T



2T

2
= T2 –

3

4
T1 + 52

T1 = 208 K

Q.31 [60]
V = KT2/3

V3/2 = (K)3/2T



46

Kinetic Theory of Gases and Thermodynamics

 TV–3/2 = const.  x–1 = –3/2
 x = –1/2

 =
nR T

x 1



 

=
1(R)(90)

1
1

2
 

= 60R

Q.32 (2)

WAB = 2 P1V1 n 2
WBC = –P1V1
WCA = 0

WABCA = (2 P1V1 n 2 – P1V1)

= nRT (2 n 2 – 1)

Q.33 (1)
P-iv ; Q-iii ; R-ii ; S-i

Q.34 (1)
WAB = nRT ln2 = RT ln2
WBC = 0

WCA =

P
PV 2V

4
1

 

 
=

PV

2(1 ) 

WABCA = RT ln2 +
RT

2(1 ) 

RT =
1

ln 2
2( 1)

 
   

Q.35 (1)
Heat and work are treated as path functions in
thermodynamics.

Q = U + W
Since work done by gas depends on type of process

i.e. path and U depends just on initial and final

states, so Q i.e. heat, also has to depend on
process is path.

Q.36 (113)

n = 0.60 = 1 –
L

H

T

T

L

H

T

T = 0.4  TL = 0.4 × 400

= 160 K
= –113°C

Q.37 (4)

= 2 2

1 1

T Q

T Q =
1

1

Q W

Q (Q W = Q
1

– Q
2
)

 
1

400 W
1

800 Q

  
1

W 1 1
1

Q 2 2

Q
1

= 2W = 2400 J

Q38 (2)
(2) Option (a) is wrong ; since in adiabatic
process V constant.
Option (b) is wrong, since in isothermal
process
T = constant
Option (c) & (d) matches isothermes &
adiabatic formula :

TV–1= constant & –1

T

p



 = constant

Q.39 (1)
Adiabatic process is from C to D




 
2 2 1 1P V P V

WD
1

=


 
D D C CP V P V

1

=




200(3) (100)(4)

1 1.4
= –500 JAns. (1)

Q.40 (1)
PV= constant
Differentiating


 

dP P

dV V


 

dP dV

P V

Q.41 (4)

S2

Piston

; S1 > S2

After piston is removed

total ; Stotal = S1 + S2
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Q.42 [100]

Q.43 (4)

Q.44 [17258]

Q.45 (2)

Q.46 (4)

Q.47 (2)

Q.48 (2)

Q.49 (4)

Q.50 [500]

Q.51 (1)

Q.52 (1)

Q.53 (1)

Q.54 [480]
v = 1.5

1 1 2 2p v p vv v

(200) (1200)1.5 = P2 (300)1.5

P
2
= 200[4]3/2 = 1600 kPa

|W.D.| =
2 2 1 1p p – p v 480 – 240

v –1 0.5

 
  
 

= 480 J

Q.55 (4)

Q.56 [25]
Pressure is not changing  isobaric process

U = nC
v
T

5nR T

2




and W = nRT

U 5 x
x 25.00

W 2 10


   

JEE- ADVANCED

PREVIOUS YEAR’S

Q.1 (A)

Number of moles of He =
4

1

Now T
1
(5.6) – 1 = T

2
(0.7) – 1

T
1
= T

2

3/2

8

1









4T
1

= T
2

Work done = –
1

]TT[nR 12




= –

3

2

]T3[R
4

1
1

= – 1RT
8

9

Q.2 (A) – p,r,t , (B) – p,r (C) – q,s, (D) – r, t
A  B  V  P const T U 
(p), (r), (t)
BC d 0

P  T 
d= du +d

(p), (r)

CD VT
du  +ve
d= +ve

(q), (s)
D A  dw  –ve
(r), (t)

dq  –ve
du = 0

Q.3 (D)

Ar

He

Rms

Rms

m

RT3

m

RT3

v

v

Ar

He  = 10
4

40

m

m

He

Ar   3.16

Q.4 (D)
Q = nC

P
T

= 2 







RR

2

f
T

= 2 







RR

2

3
× 5

= 2 ×
2

5
× 8.31 × 5 = 208 J

Q.5 (D)

P
1
=

1

1

M

RT
...(i)

P
2

=
2

2

M

RT
...(ii)

by (i) and (ii)

9

8

2

1 




Q.6 (A,B,C,D)
q = mCT
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dt

dT
mc

dt

dq


R = rate of absortion of heat =
dt

dq
 C

(i) in 0 – 100 k
C increases, so R increases but not linearly
(ii)q = mCT as C is more in (400 k – 500 k) then (0
– 100 k) so heat is increasing.
(iii) C remains constant so there no change in R from
(400 k – 500 k)
(iv) C is increases so R is increases in range (200 k –
300k)

Q.7 (A)

In FG work done in isothermal proces is nRT ln










i

f

V

V
= 32 P

0
V

0
ln 











0

0

V

V32

= 32 P
0
V

0
ln 25= 160 P

0
V

0
ln 2

In GE,W = P
0
V = P

0
(31 V

0
) = 31 P

0
V

0

In GH work done is less than 31 P
0
V

0
i.e., 24 P

0
V

0

In FH work done is 36 P
0
V

0

Q.8 [2]

w
ibf

= 150 J

w
iaf

= 200 J

Q
iaf

= 500 J So U
iaf

= 300 J

b

f

i
200 J100 J

a

P

V

So U
f
= 400 J

U
ib

= 100 J

Q
ib

= 100 + 50 = 150 J

Q
ibf

= 300 + 150 = 450 J

So the required ratio
ib

bf

Q

Q
=

150

150–450
= 2

Q.9 (D)

Let final temperature of gases is T

Heat rejected by gas in lower compartment (nC
v
T) =

)T700(R
2

3
2 

Heat received by gas in above compartment (nC
P
T)

= )400T(R
2

7
2 

Equating above

2100 – 3T = 7T – 2800

 T = 490 K

Q.10 (D)

W
1
+ U

1
= Q

1

W
2
+ U

2
= Q

2

Q
1
+Q

2
= 0

R
2

7
(T – 400) = R

2

5
(700 – T)

 T =
12

6300
= 525 K

So W
1
+W

2
= 2 . R. (525 – 400) + 2R(525 – 700)

= + 250R – 350 R

= – 100R

Q.11 (D)

In first process, 112.5
1

i i f fPV P V
U W J




   



In two-step process,  1 2Q U W W    

(V V ) 112.5 700 812.5i f iU P J      

Hence, (D)

AnswerQ.12Q.13andQ.14byappropriatelymatching
the information given in the three columns of the
following table.
An ideal gas is undergoing a cyclic thermodynamic
process in different ways as shown in the corresponding
P – V diagrams in column 3 of the table. Consider only
path from state 1 to state 2. W denotes the
corresponding work done on the system. The equations
and plots in the table have standard notations as used
in thermodynamic process. Here  is the ratio of heat
capacities at constant pressure and constant volume.
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The number of moles in the gas is n.
Column-1
Column-2
Column-3

(I)  1 2 2 2 1 1

1
W P V P V

1
  

 

(i) Isothermal

(P)

1 2

V

P

(II) 1 2 2 1W PV PV   

(ii) Isochoric

(Q)

1

2

V

P

(III) 1 2W 0 

(iii) Isobaric

(R)

1
2

V

P

(IV)
2

1 2

1

V
W nRT ln

V


 
    

(iv) Adiabatic

(S)

1

2

V

P

Q.12 (A)

Q.13 (D)

Q.14 (D)
12 to 14

I.
2 2 1 1P V P V

W
1




 

(iv) Adiabatic Q

II.  2 1W P V V  

(iii) Isobaric P
III. W = 0
(ii) Isochoric S

IV.
2

1

V
W nRT ln

V
 

(i) Isothermal R

Q.15 (B, C, D)

I

II

III

IV

T

V

(A) Process I is not isochoric, V is decreasing

(B) Process II is isothermal expansion.

U = 0, W > 0

Q > 0

(C) Process IV is isothermal compression.

U = 0, W < 0

Q < 0

(D) Process I and III are NOT isobaric because in

isobaric process T  V hence isobaric T-V graph will

be linear.

Q.16 (900)
v

i
= v

v
F

= 8v

For adiabatic process
5

3


 


for monoatomic process

1 1
1 21 2T V T .V 

   2 3 2 3
2100 v T 8v

2T 25 k

 v

FR
U nc T 1 100 25 12 75 900

2

 
        

 
Joule

Q.17 (C)
Process - I is an adiabatic process
Q = U + W
Q = 0
W = –U
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Volume of gas is decreasing  W < 0
U > 0
Temperatuer of gas increases.
No heat is exchanged between the gas and surround-
ing
Process - II is an isobaric process
(Pressure remain constant)
W = PV = 3P

0
[3V

0
– V

0
] = 6P

0
V

0

Process - III is an isochoric proces
(Volume remain constant)
Q = U = W
W = 0
Q =U
Process - IV is an isothermal process
(Temperature remains constant)
Q = U + W
U = 0

Q.18 (A, B)
From graph

Process 1  2 is isobaric with P =
0

0

RT

V

Process 2 3 is isochoric with V = 2V
0

Process 3  4 is isobaric with P =
0

0

RT

2V

Process 4 1 is isochoric with V = V
0

Work in cycle =
0 0 0

0 0
0 0

RT RT RT
.V – .V

V 2V 2


Q
1–2

= nC
p
T = n.

5R

2
.T

0

Q
2–3

= nC
V
T = n.

3R

2
.T

0


1 2

2 3

Q 5

Q 3






Q
3–4

= nC
p
T = n. 0T5R

.
2 2


1 2

3 4

Q
2

Q






Q.19 (A,C,D)

n
1
= 5 moles

1VC =
3R

2
P

0
V

0
T

0

n
2
= 1 mole

2V

5R
C

2


(C
v
)

m
= 1 21 V 2 v

1 2

3R 5R
5 1n C n C 5R2 2

n n 6 3

  
 




m

=
p m

v m

(c )

(c )
=

8

5

Option 4 is correct

(C
p
)

m
=

5R

3
+ R =

8R

3

(1) 0 0P V = P
0V

4


 
 
 

Þ P = P
0
(4)8/5 = 9.2 P

0
which is

between 9P
0
and 10P

0

(2)Average K.E. = 5 ×
3

2
RT + 1 ×

5RT

2

=10RT
To calculate T

0 0 0
0

0

P V V
9.2P

T 4 T
 



so T = 0

9.2
T

4

Now average KE = 10R × 9.2 0T

4
= 23RTT

0

(3) W =
1 1 2 2P V – P V

–1
=

0
0 0 0

0

V
P V – 9.2P

4 13RT
3 / 5


 

Q.20 (3)
(I) Degree of freedom f = 3
Work done in any process = Area under P–V graph
Work done in 1 2 3 = P

0
V

0

= 0RT

3
 (Q)

(II) Change in internal energy 1 2 3 =
U = nC

v
T

=
f

2
nRT

=
f

2
(P

f
V

f
– P

i
V

i
)

=
3

2

0
0 0 0

3P
2V – P V

2

 
 
 

=3P
0
V

0

=U = RT
0
 (R)

(III) Heat absorbed in 1  2 3
for any process, 1st law of thermodynamics

Q =W +

Q = RT
0
+ 0RT

3

Q = 04RT

3
 (S)

(IV) Heat absorbed in process 1 2
Q = U + W
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=
f

2
(P

f
V

f
– P

0
V

0
) + W

=
3

2
(P

0
2V

0
– P

0
V

0
) + P

0
V

0

=
5

2
P

0
V

0

=
5

2

0RT

3

 
 
 

Q =
5RT

6
 (U)

Q.21 (D)
Process 1  2 is isothermal (temperature constant)
Process 2  3 is isochoric (volume constant)
(I) Work done in 1 2 3
W = W

12
+ W

23

= nRT In
f

2 3

i

V
W

V


 
 

 

=
0 0

0

RT 2V
In

3 V

 
 
 

+ 0

W = 0RT
In2

3
 (P)

(II)U in 1 2 3

U =
f

2
nR(T

f
– T

i
)

=
3

2
R

0
0

T
T

3

 
 

 

=
02T3

R
2 3

 
 
 

U = RT
0
 (R)

(III) For any system, first law of thermodynamics
for 1 2 3
Q = U + W

Q = RT
0
+ 0RT

3
In 2

Q = 0RT

3
(3 + In 2) (T)

(IV) For process 1 2 (isothermal)
Q = U + W

=
f

2
nR(T

f
– TT

i
) + nRT In (V

f
/V

i
)

= 0 + R
0 0

0

T 2v
In

3 v

  
  

   

Q = 0RT

3
In 2  (P)

Q.22 (1.77 to 1.78)

V
1 4V1 32V1

V

P
P1

P1/4

P2

   
5/3 5/31

1 2 1

P
4V P 32v

4


5/3

1 1
2

P P1
P

4 8 128

 
  

 

 1
1 1 1

1 1 2 2
adi

P
P V 32V

P V P V 128W
51 1
3




 
  

 1 1
1 1

P V 3 / 4 9
P V

2 / 3 8
 

1
iso 1 1 1 1

1

4V
W P V ln 2P V ln 2

V

 
  

 

iso 1 1

adio
1 1

W 2P V ln 2 16
ln 2 f ln 2

9W 9P V
8

  

16
f 1.7778 1.78

9
  

Q.23 (6)
Assuming temperature remains constant at 300 K
FromP

1
V

1
=P

2
V

2

'0 0
1 1

V V
P P Ax

2 2

T T

   
   

   

x

P 
2

P 
1

 1 2
' 'p P A mg 
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0 0
1 2

0 0

V V
P P

2 2
A mg

V V
Ax Ax

2 2

    
    
     

 
  

 

1 1
nRT mg

4 x 4 x

 
    

(0.1)(8.3) 2

4 x 4 x
mg

16 x

   
  

2

2x
3 1

16 x

 
 

 

6x=16–x2

x2+6x–16=0
x=2
distance =4+2=6m

Q.24 (2.05)
W=(P)

avg
×4R2a

2dP
.4 R a

2
 

{for small change (P)
avg

<P> arithmetic mean}

=PV= c 20PP
dP dV 4 R a

V V


    

2 20P
4 R a 4 R a

2V


    

2 20
3

P
4 R a 4 R a

2 4 R


   

 

 2 3
4pRP a

2


 

x 2.05 

Q.25 (C)
Process 1

P = constant, Volume increases and temperature also
increases
 W = positive , U = positive

Heat is positive and supplied to gas
Process 2
V = constant, Pressure decrease

Temperature decreases

W pdV 0 

T is negative and
f

U nR T
2

  

U in negative
Q = U + W

Q  Heat is negative and rejected by gas

Process 3
P = constant, Volume decreases
Temperature also decreases

W = PV = negative

f
U nR T

2
   = negative

Q = W + U = negative

Heat is negative and rejected by gas.
Process 4
V = constant, Pressure increases

W pdV 0 
PV = nRTTemperature increase

f
U nR T

2
   is positive

Q = W + U = positive
Ans (C) step 1 and step 4

Q.26 (A)

Q.27  (B)
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EXERCISES-I

Elasticity and Thermal Expansion

Q.1 (3)

FL 1

YA A
  l l

Q.2 (3)

2 2

1 1 2
2

2 2 1

L dFL L 1 1 1

AY d L d 2 2 8

   
           

  

l
l l

l

Q.3 (1)

Because due to increase in temperature intermolecular

forces decreases.

Q.4 (3)

Breaking Force Area of cross section of wire (r2)

If radius of wire is double then breaking force will
become four times.

Q.5 (1)

In the region OA, stress  strain i.e. Hooke’s law hold
good.

Q.6 (4)

As stress is shown on x-axis and strain on y-axis

So we can say that
1 1

Y cot
tan slope

   


So elasticity of wire P is minimum and of wire R is

maximum

Q.7 (2)

Q.8 (3)

Q.9 (2)

Angle of shear
–1r 4 10

30º 0.12º
L 100

 
    

Q.10 (3)

Adiabatic elasticity K = P

Q.11 (1)
Area of hysterisis loop gives the energy loss in the

process of stretching and unstretching of rubber band

and this loss will appear in the form of heating.

Q.12 (4)

21 YA
U .

2 L

 
  

 
l l  2U  l

2 2

2 2
2 1

1 1

U 10
25 U 25U

U 2

   
       

  

l

l

i.e. potential energy of the spring will be 25 V

Q.13 (1)

Energy per unit volume  
21

Y strain
2

  

2E
strain

Y
 

Q.14 (3)

Q.15 (4)

Increase in tension of wire = YA

= 8 × 10–6 × 2.2 × 1011 × 10–2 × 10–4 × 5 = 8.8 N

Q.16 (3)

F = YAt = 2 × 1011 × 3× 10–6 × 10–5 × (20 –10) = 60 N

JEE-MAIN

OBJECTIVE QUESTIONS
Q.1 (1)

d = 4mm
Y = 9 × 1010 N/m2

F

A
= Y





F =AY



=(2x10–3)2 x 9 × 109 x

1

100
=x 4 x 10–6 x 9

× 107 = 360N

Q.2 (3)

F / A

/ 
= Y

LOAD

ELONGATION

A

B
C

D

O

ELEMENTRY
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2F Y r


 


F 1

Y


 




= r2

 Y &  are same for all then

For same load r 
1



Q.3 (3)

F =
h

x
A = 0.4 × 1011 × 1 × .005 ×

1

1002. 2

= 4×104 N

Q.4 (3)

V

V


=

P

B


=

5

11

1 10

1.25 10




= 8×10–7

Q.5 (3)
On heating volume of substance increases while mass
of the substance remains the same. Hence the density
will decrease

Q.6 (4)

K =
AY


, K' =

4AY

/ 2
= 8K

2

2

1
8K

U 2
12 K
2

 


 




U = 16 J

Q.7 (4)

21 YA
U .

2 L

 
  

 
l l  2U  l

2 2

2 2
2 1

1 1

U 10
25 U 25U

U 2

   
       

  

l

l

i.e. potential energy of the spring will be 25 V

Q.8 (3)
Given L = 1 mm,L = 6 × 10-5 mm
 = 12 × 10-6 k-1

then
L = LT
6 × 10–5 mm = (1mm) (12 × 10–6)T
T = 5°C

Q.9 (1)
Given
L = 25 cm,A= 0.8 × 10-4 cm2

T = 10°C,= 10-5 °C-1, Y = 2×1010N2

then

L

L


= T =

F

AY
F = AYt
= (10–5)(0·8 × 10–4) × (2 × 1010) × 10
=160 N

Q.10 (3)

L
1
= L + L

1
t

L
2
= L + L

2
t

1 1 1

2 2 2

Stress Y L t L
.

Stress L Y L t

 


 

1 =
1

2

Y2

3 Y 
1

2

Y 3

Y 2


Q.11 (3)

I = CMR2

dI = 2CMRdR = 2CMR [RT] = 2IT

Q.12 (2)

F =AY
L

L


=AYYT

f = K
F AY T

K
A




 

 f 
Y



Q.13 (2)
We know that

U =
1

2
× stress × strain × volume =

1

2
× Y (strain)2

volume

U =
1

2
Y (T)2 AL

UT2

U (t - 20)2

Q.14 (2)

L

L


=t = – 20

means read more so actual is less

Q.15 (2)

Given L = 20 cm,L
1
=0.075 cm,L

2
= 0.045 cm

L = LT

0·075 = 20
1
(100)

0·045 = 20
2
(100)

Let for third rod L
1

and L
2

= 20 – L
1
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So L
3

=L
1
+L

2

0·06 = L
1


1
100 + (20 – L

1
) 

2

100

L
1

= 10 cm.

Q.16 (1)
Given
f = coafficient of cubical expansion


Spere
= 

l
’

 3

266.5 1.527

1 35f4 7

3 2


 

 
 

 f= 8.3 × 10–4/.c

Q.17 (2)

L
F A

L(1 t)


 

 

A t
F

(1 t)




 

Q.18 (1)
At 0°C
then 

l
v

s
g = W

0

...(1)
At t°C 

l
’ v

s
’g = W

...(2)


s
v

s
= 

s
’ v

s
’ =m

...(3)
(2) – (1) (

l
’ V

s
’ – 

l
V

s
) g = W – W

0

W = W
0

+ (
l
{1 – 

l
t} v

s
(1 + 

s
t) – 

l
v

s
)g

= W
0
[1 – (

l
– 

s
)t]

Q.19 (1)
V

>V

e

> 3.

Q.20 (3)


1
(1 +

1
T) + 

2
(1 +

2
T) = 

f


f
= 

1
+ 

2
+ (

1


1
+ 

2


2
)T


f
= (

1
+ 

2
) 1 1 2 2

1 2

1 T
   
  

 

 

  .

Q.21 (3)


x
+ 

y
for x – y plane


CDEH

= 3 × 10–5 per °C

Q.22 (4)


oil
= 

vessel
D.

Volume increases but mass remains same.
Q.23 (3)

 
m

< 
Al


m

>> 
ac

V
m

<V
al

So completely Immersed


m
< 

Al
So W

2
> W

1
[Displaced

mass of alchol is less]

Q.24 (3)

PV = nRT V =
nR

P
T

V =
V

T
T

So ,  =
1

T

Q.25 (4)
Initially 

s


l
and V density of sphere, density of liquid

and volume.

s sT T

T s

V g V gB B
100

B V g

    
 


l l

l

× 100 [(1+ 
s
t)(1

– 
l
t) – 1] × 100
= – 0.05 (decreases)

Q.26 (2)

L

L


× 100 = 1 = 100t = 100(T

2
– T

1
)

A

A


× 100 = 200t = 2%

Q.27 (3)

L =L
1
+L

2

(3L)
net
t = Lt = (2L) (2)t

net

4 5

3 3

   
  

Q.28 (3)

V
m

denote volume of murcury

V
air

= V
flask

– V
m

= V’
flask

– V
m
’

V
flask

– 300 = V
flask

[1 + 3 × (9 × 10–6)t] – 300 [1 + 8 × 10–

4 t]

V
flask

=
4

6

(300 1.8 10 )

27 10 t





 

 
t = 2000 cm3

Q.29 (3)

c

s c s

c

Given c
c s 3

and s

    
           

l

l

c
s

c s

3

  
 

Q.30 (3)


0°C
h

1
g = 

30°C
h

2
g


0

(120) = 
0

(1 – 30) (124)

4120 1
1 11 10 / C

124 30
 

      
 
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Q.31 (1)
On heating the expansion will take place hence both
the distances will increase.

Q.32 (4)
at 0°C

V
0x

= 20A; V
0y

= 30A
Now at time T y read 120°C
So. V’

0y
=A(120) = 30A(1 + 

m
T)

and V’
0x

=Ah = 20A (1 + 
m

T)

Dividing
120 30

h 20


 h = 80.

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q.1 (A)

L

W

air a= L 
water

= 
w

L
a
=

YA

WL
L

w
=

YA

L
W

W W
o














=
YA

L]1[W
o

w






w

a

L

L
= 














o

w1 
w

o




=

wa

a

LL

L



Q.2 (A)

A

F
=

h

x


410164

500


= 2

6

104

x
102




 x = m
32

105 2
= 0.156 cm

Q.3 (D)
depth = 200 m

310
100

1.0

V

V 


density = 1 x 103

g = 10

B =
v/v

p




=

v/v

hg





 B = 200 x 10 x 103 x 1000 = 2 x 109

Q.4 (B)

2

1

r

r
= b

2

1




= a

2

1

Y

Y
= c


1

=
11

1

YA

)mg3( 


2

=
22

2

YA

)mg2( 

2

1








= 22

112

1 YA
YA2

3





=

2

3

cb

a
2 =

cb2

a3
2

Q.5 (C)

A

F
= Y





If Y &



are constant.

F = AY




 F  A;  F’ = 4F

Q.6 (D)


B
= 2m 

S
= L

A
B

= 2 cm2 A
S

= 1 cm2


B

= 
S

BA

F

B

B

Y


=

S

S

S YA

F 

L =
BB

SS

YA

YA


B
=

2

1
x 11

11

10x1

10x2
x 2 = 2

Q.7 (D)

2

1

r

r
=

2

1
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PE (per unit volume) =

2

A

F

Y2

1









PE 1/A2

2

1

PE

PE
= 2

1

2

2

A

A
= 16 : 1

Q.8 (B)
Given volume at 0°C = V

0
,

cofficient of Linear expansion = a
g

cofficient of cubical expansion = 
m

 
 

      
 

  

0 0 gm b

0 g0

V 1 T V (1 3a T)V V
h

A 1 2a TA

 
 
 




0 g

0 g

V T 3a

A 1 2a T

Q.9 (C)

Initially P =
  

 


b b b b

c c

V V
, P

A A

 
   

3
b b

3 3

c

V 1 10 10
P

A 1 2 10 10 1 10 10



 

  
  

    

2

P
P

1 2 10
 

 

2P 1 (1 2 10 )
1 100 100

P 1

    
    

 
= – 2%

Q.10 (C)
dx =dx

dxx

   
L L

6

0 0

dx dx 3x 2 10 20 0


     

L = (20 × 10–6)
 

 
 

L2

0

3x
2x

2

L = (20 × 10–6)
23L

2L
2

 
 

 
=1·2 cm

L
new

= L +L

Q.11 (C)
Let eqn. temp = t then
m

R
s

R
t = m

s
s

s
(100 – t) ...(1)

d
R
’ = d

R
(1 + 

R
t) ...(2)

d
s
’ = d

s
[1 –

s
(100 – t)] ...(3)

Now d
R
’ = d

s
’ ...(4)

So. d
R
(1 +

R
t) = d

s
[1 –

s
(100 – t)]

t =
 
 

s s R

R R s s

d 1 100 d

d d

  

  

Put the above value of t in eq. 1.

R R

S s

m s
1

m s

 
 

 
t = 100;

s

r

m 23

m 54


Q.12 (B)

w
1
= Mg – F

B

w
2
= Mg – F

B













T1

T1 m


= Mg – F

B
[1 + (

m
– 


)T]

Since , 
m

< 


So , w
2
> w

1
.

Q.13 (A)

At 40°C

1 Unit will be = 1(1 +
s
t) units

= 1(1 + 12 × 10–6 × 40) Units

So 100 Unit will be = 100 (1 + 12 × 10–6 × 40) =Actual

100 (1 + 40 × 12 × 10-6) = l
0
(1 + (2 × 10–6) 40)

l
0
= 100 [ 1 + 400 × 10–6] > 100mm.

Q.14 (B)

Given = 1.4 × 1011 Pa,= 1.7 × 10-5°C-1

T = 30°C - 20°C = 10°C

 = –
P

V / V




P = – 

V

V



P =(3T)

=1.4×1011×3×1.7×10-5×10

= 7.14 × 107 Pa.

Q.15 (C)

1 1y

2 2y

2

1




=

6

2

 
A

F
Y      is same for both
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2

2

1

1

A

F

A

F

=
22

11

Y

Y





2

1

Y

Y
=

1

2




= 3 : 1

Q.16 (A,B)

On heating or cooling water from 4ºC it expands in

both cases.

Q.17 (A)

In bimetallic strips the two metals have different

thermal expansion coefficient. Hence on heating it

bents towards the metal with lower thermal

expansion coefficient.

Q.18 (C)

6 × 10–5 = 1 × 12 × 10–6 ×T

6

5

1012

106







=TT = 5ºC.

Stress in wire B = 2
Br3

mg



Stress in wire A = 2
Ar3

mg4



if 2
Br3

mg


= 2

Ar3

mg4


either wire will break.

Q.2 (A, C, D)

Gravitational Potential Energy U
G

= Mgl

Elastic Potential Energy U
e

=
1

2
stress × strain × vol-

ume


 





 00

F mg1 F
V

V A2 A

=
1

2
mgl

Heat Produced = U
e

=
1

2
Mgl

Q.3 (A,B,C,D)

On heating, every dimension increases.

Q.4. (BC)

StrainSame

Stress =
F

A
= constant

FA

 F r2

Energy =
1

2
stress × strain × volume

Area

 r2

Q.5 (A, C, D)

(A) % rise in area =T = 2(T)

= 2 × 0.2 = 0.4%

(C) % rise is volume = 3 T

= 3 × 0.2 = 0.6%

(D)=
0.2

80 100
= 0.25 × 10–4/°C

Q.6 (B)
Because floating


s
Vg = 



V

2

 
 
 

g

2
s

= 


Q.7 (A)
if 

L
> 

S
then submerged more else come out of liquid

respectively
and 

L
> 

s
(always)

Q.8 (A)
V’ = V[1 + 

s
t]


l
’ = 

l
[1 – 

l
t]


l

V

2

 
 
 

g = 
l
’

V

2

 
 
 

g


l

V

2

 
 
 

g = 
l
(1 – 

l
t)

V

2

 
 
 

(1 + 
s
t)g

(1 – 
l
t) (1 + 

s
t) = 1

(1 – 
l
t) (1 + 3

s
t) = 1

3
s

– 
l
= 0

Q.1 (ABC)

MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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Q.9 (A)
initially 

l
(A

s
h)g = (

s
A

s
h

o
)g

...(1)
Now 

l
’(A

s
’h) g = (

s
’A

s
’h

o
’)g

...(2)


l
(1 – 

l
t)h = 

s
(1 – 3

s
t)h

o
(1 + 

s
t)


L

= 2
s

Q.10 (A)
l
’ < r

s
or

2

l

 


  1 t 2
l l

l

1 + 
l
t > 2

t >
1


l

T
F

– T >
1


l

 T
F

> T +
1


l

Q.11 (C)

K =


AY
=

4

102104 104  

= 2 × 106

 =
m

K
= 100

Q.12 (D)
W(h + x) = 1/2 kx2

100(0.99 + x) =
2

1
× 2 × 106 × x2

104 x2 – x – 0.99 = 0
100 x (100x – 1) + 0.99 (100 x –1) = 0

x =
100

1
m = 1 cm

Q.13 (A)

x =
AY

PL

 =
A

P
=

L

xY
=

4

10x2x10 102

= 5 × 107 N/m2

Q.14 (C)

K
1
= 106 , K

2
= 2 × 106

K
eq

= 6

66

103

10x102




=

610
3

2


 =
6003

102 6




=

3

100

Q.15 (B)

Total weight = 1000 + w

weight on each rod =
4

w1000 

stress = 41044

w1000



= 9 × 106

 w = 14400 – 1000 = 13400 N

No. of persons are =
50

1340
= 26

Q.16 (A) p (B) q ; (C) r ; (D) q

loss in PE = Mg

M

 =  L

Elastic PE =
2

1
Kx2

=
2

1

A

Mg
x

L


xALAL

= MgL/2

Heat = MgL – Mg L/2

= Mg L/2

Q.17 (A) – (r) ; (B) – (q) ; (C) – (p) ; (D) – (s)

Q.18 (A) – (p) ; (B) – (r) ; (C) – (s) ; (D) – (q)

(A) Buoyant force = Mg = constant = gVsub 

V
sub

=
g

Mg


.

volume of displace fluid = constant

 density of fluid must be constant.
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(B) (V
solid

– V
sub

) = constant

 













liquid

solid
solid

M
–V = constant

V × 3×T =
d

TM 

 =



d

3

(C) Ah
in

d
liquid

= A(h
in

+h
out

) 
solid

= M (mass of solid)

h
out

=
solidA

M


– h

in
=

solidA

M


–

liquidAd

M
=

constant





)T21(A

)T31(M
–

d)T21(A

)T1(M




=

Ad

M

A

M




 = 2 +


d

(D) Ah
in

d
liquid

g = Buoyant force = constant = Mg

A
0

(1 + 2  T) h
in T1

d


= constant

h
in

= dA

M

0
(1 + ( – 2)T)

= 2

NUMERICALVALUE BASED
Q.1 [250]

800

1

40

05.0









l

l

T = Y
l

l
×A= 200 × 109 ×

800

1
×1 ×10–6

=250 N

Q.2 [1000]
Decrease in temperature would cause shrinking of wire,
as wire is attached at 2 ends, this would result in ten-
sion (stress) in wire.

= 2 × 10–6

A

F
=







= 11

8

101.1

102.2




2 × 10–3




T = (2 × 10–3) = (2 × 10–6)(T)

= 1000°C

Q.3 [500]
Temp. is increased by  then

l = l

 =




l

l

E
1

= (Al)S = Al S




l

l

when stretched, Stress = Y
l

l

E
2
=

2

1







 

l

l
Y 







 

l

l
× AAl =

l

l

2

A)(Y 2

So,
2

1

E

E
=

A)Y(

2SA
2ll

lll




=

Y)(

S2

l

l




= 500

Q.4 [0012]

Q.5 [5]
At equilibrium
2T sin = mg

2. 








a2

YA
x sin. sin = mg


a

YA
x. 2

2

a

x
= mg

x =
3

1
3

YA

mga













=
3

1

24–29

2

m10)m/N104.2(

s/m10kg5m1

















= 5 cm

Q.6 [2]

 = y

F





yA/F






3

3

102

104000
y




 = 2 × 109 N/m2
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Q.7 [4]

Stress = 310

40
 = 4 × 104 N/m

Q.8 [1]

SL

L







 
=

SS

S

YA

T

BL

L







 
=

BB

S

YA

T

strain equal

SS

S

YA

T
=

BB

B

YA

T

 11
S

1021.0

T


= 11

B

1012.0

T



TS = TB
Take torque absent O
TS × x = TB (200 – x)
x=100 cm

Q.9 [3]
Let us calculate elongation () in part length x from
lower side.

F = x
L

mg

Stress = x
AL

mg

Strain x
YAL

mg

dx

d x 


 
 x

00

x dxx
YAL

mg
d

x

x =
2x

YAL2

mg

1

3

2

L

YAl2

mg

2

L
–L

YAl2

mg

2

2

2

halflower

halfupper




































.

Q.10 [10000]

F = Ay




= Ay  = 10–3 × 1011 × 10–6 (100 – 0°)
= 10000 N

KVPY

PREVIOUS YEAR’S
Q.1 (A)

Will increases by an amount dT

Q.2 (A)

Q.3 (D)
Increase in length of each liquid is same.
 = 

Hg Bro min e

2 2
1 2

V V

d d

 


 

Hg Bro min e

2 2
1 2

(V) V

d d

    


 

2
5

Hg1

5
2 Bro min e

d 18 10

d 108 10





  
  
  

1

2

d

d =
1

0.4
6


Q.4 (C)
When some boyd is constrained from expanding or
bending then on heating thermal stress get develop in
the body.
Stress = Y T
=2×1011× 1.1 × 10–5× (40 – 25) = 3.3 × 107 N/m2

= 3.3 × 107 Pa

Q.5 (A)
Initially wire is slack so it do not have any deformation
energy. When block is given some velocity it move
due to kinetic energy, one wire get taut. Internal force
get develop in wire and KE start decreases and
deformation energy of wire increase. Till block come at
rest using energy conservation

 221 1
m Y strain A L

2 2
    

2

21 1 x
m Y A L

2 2 L

 
      

mL
x

AY
 

Q.6 (D)
high density is not the reason for its uses in clinical
thermometers.

Q.7 (B)

Thermal expansion of a solid is due to asymmetric

characteristic of inter atomic potential energy curve

of the solid.
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Q.8 (A)
Since when temperature of water rises from 0ºC to 10
ºC, its density first increase, becomes maximum at 4ºC
and then decreases, therefore fractional submergence
will first decrease and then increase.

Q.9 (B)

x vx

R

v

A1v1 = A2v2

(4R2)v= (4x2)vx

vx =
2

2

R

x
.v

so smallkinetic energyatx for width dx=dk=
1

2
dm (vx

2)

dk =
1

2
[(4x2dx)vx

2]

=
1

2
4x2

2
2

2

R
v

x

 
  
 

dx

Total kinetic energy

4 2
2

R

dx
k dk 2 R v

x



   

4 2 3 2

R

1
k 2 R v 2 R v

x


 

     
 

Q.10 (B)

Volume of water received from rain =

6 10
V 600 10 2.4

100
   

V = 1440 × 105 m3

% of needed water =
5

12

1440 10
100 10%

1.4 10


 



Q.11 (A)

P

h
P = P + gh0

P = Pressure on upper surface of window

= P
0

+ gh

Pin = Pressure inside the submarine

= P
0

Net force = (P
0
+ gh)A – P

0
A

= gh A

= 1.03 × 103 × 10 × 100 × 900 × 10–4

= 9.27 × 104 Newton

= 0.93 × 105 Newton

Q.12 (B)

1 2

Apply Bernoulli between point-1 and point-2

2 2
1 1 2 2

1 1
P V P V

2 2
    

1 atm

Force by hand
P P

Area
 

V
1
tends to zero becomes are of point-2 is very small.

P
2

= P
atm

2
atm at 2

2F
P F / A P (1/ 2) V

PA
     ....(i)

From Kinematics.

2

2(h)
2 V

g
 

2
2V 20 

Using (i) & (ii) we get ...(ii)

2F
20 F 10 N

A
  


Q.13 (A)

Stress =
Force 1

Area Area

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Stress
2

2

1
(Area r )

r
  

ratio of stress =

2
1 1

2 4

 
 

 

JEE-MAIN

PREVIOUS YEAR’S

Q.1 (1)

V

V


= T

= 3T

Q.2 (4)

1T

A
=

1y( ) 



2T

A
= 2y( ) 



1

2

T

T =
1

2





 

 

T12 – T1

1 2 2 1

1 2

T T

T T





 
= 

Q.3 (2)

F

A
= v

L

L



F

A
= y ×

0.04

L
…(i)

F

4A
= y ×

L

2L


…(ii)

4 =
0.04 2

L





L = 2 × 10–2

x=2

Q.4 (1)

Q.5 [32]

For A 
 2

E 2mm
y

ar
....(1)

For B 
 2

E 4mm
y

.16r b
....(2)

(1)/(2)

16 =
2b
4a


a 1

b 32
Answer = 32

Q.6 (1)
P

1
= gd + P

0
= 3 × 105 Pa

gd = 2 105 Pa
P

2
= 2gd + P

0

= 4 × 105 + 105 = 5 × 105 Pa

% increase =
1 2

1

P P
100

P




5 10 3 10 200
100 %

3 10 3

 



  
  



Q.7 (4)
(4) P = hg

 

3 3

–2

–ΔP –2×10 ×10 ×9.8
B = =

ΔV –1.36×10

V

 
 
 

×N/m2

Q.8 (3)

P0

a
v

P0

A
v1

H

m = 24 kg
A = 0.4 m2

a = 1 cm2

H = 40cm
Using Bernoulli’s equation


 

   
 

0

mg
P gH

A
+

    2
0

1
P 0 v

2

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Neglecting v
1

v 


2mg
2gH

A

v 8 1.2
v = 3.033 m/s
v 3m / s

Q.9 (1)

Q.10 (2)

Q.11 [5]

Q.12 (2)

Q.13 [20]

Q.14 (2)

3

3

MgL
Y

4bd




y M 3 L b 3 d

y M L b d

     
    



–3 –3 –2 –2 –2y 10 3 10 10 3 10 10

y 2 1 4 4 5

  
    

= 10–3 [0.5 + 3 + 2.5 + 7.5 + 2] = 0.0155
Option (2)

Q.15 [40]

Q.16 (3)

Q.17 (4)

Q.18 (2)

Force on each column =
mg

4

Strain =
mg

4AY

=

3

11

50 10 9.8

4 (1– 0.25) 2 10

 

  
= 2.6 × 10–7

Q.19 [500]

Q.20 [8]
Thermal force F =AyT
F = (10 × 10–4) (2 × 1011) (10–5) (400)
F = 8 × 105 N
 x = 8

JEE-ADVANCED
PREVIOUS YEAR’S

Q.1 [3]

A

F
= y

L

L

)(y
A

mg


m=

g

)(yr

g

)(Ay 2 



=

10

101010)10( 51123  

=  3

Q.2 (C)

Y =

L

A

F

1










...(i)

Y =

L2

A4

F

2










...(ii)

2

1








= 2

Q.3 [0.23 to 0.24] [2.38]

dV 3da

V a


 V ghdP gh
B V a

dV dV 3da

  
   

3
9 1 5000 10 10 1

70 10
3 da

   
 



25
da a 10 m 2.38mm

21
    
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Q.1 (2)

According to Boyle’s law, pressure and volume are

inversely proportional to each other i.e.
1

P
V



P2V2

(P1 V1)

h


1 1 2 2P V P V 

 0 w 1 0 2P h g V P V   

w
2 1

0

h g
V 1 V

P

 
   

 

2

2 1

47.6 10 1 1000
V 1 V

70 13.6 1000

   
   

  

 V
2
= (1 + 5) 50 cm3 = 300 cm3.

[As P
2
= P

0
= 70 cm of Hg = 70 × 13.6 × 1000 ]

Q.2 (3)

As the both points are at the surface of liquid and

these points are in the open atmosphere. So both point

possess similar pressure and equal to 1 atm. Hence

the pressure difference will be zero.

Q.3 (3)

P
1
V

1
= P

2
V

2
1. (P

0
+ hg) V = P

0
× 3V

0

2 75 13.6 g
h g 2P h 15m

13.6
g

10

  
     



Q.4 (4)

Pressure = hg i.e. pressure at the bottom is

independent of the area of the bottom of the tank. It

depends on the height of water upto which the tank is

filled with water. As in both the tanks, the levels of

water are the same, pressure at the bottom is also the

same.

Q.5 (4)

Fluid Mechanics

ELEMENTARY

Mercury

G
ly

ce
ri

n
e

10 cm

Oil h

BA

10–h

At the condition of equilibrium

Pressure at point A = Pressure at point B

P
A

= P
B
 10 × 1.3 × g = h × 0.8 × g + (10 – h) × 13.6 × g

By solving we get h = 9.7 cm

Q.6 (4)

Let M
0

= mass of body in vacuum.

Apparent weight of the body in air = Apparent weight

of standard weights in air

 Actual weight – upthrust due to displaced air

= Actual weight – upthrust due to displaced air

 1



20
0 0

1 2

1

d
M 1

dM M
M g dg Mg dg M

d d d
1

d

 
 

            
      
 

Q.7 (4)

Apparent weight

= V( – )g = l × b × h × (5 – 1) × g

= 5 × 5 × 5 × 4 × g Dyne = 4 × 5 × 5 × 5 gf.

Q.8 (1)

Fraction of volume immersed in the liquid
inV V

 
  

 

i.e. it depends upon the densities of the block and liquid.

So there will be no change in it if system moves upward

or downward with constant velocity or some

acceleration.

Q.9 (2)

V
V g g

2
  

 density of water
2


    
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Q.10 (2)

For streamline flow, Reynold’s number R

r
N






should be less. For less value of N
R
, radius and density

should be small and viscosity should be high.

Q.11 (3)
If the liquid is incompressible then mass of liquid
entering through left end, should be equal to mass of
liquid coming out from the right end.
M = m

1
+ m

2
A

1
= A

2
+1.5A .

A × 3 = 4 × 1.5 + 1.5 A. m/s

Q.12 (4)

As cross-section areas of both the tubes A and C are

same and tube is horizontal. Hence according to

equation of continuity 
A

= 
C

and therefore according

to Bernoulli’s theorem P
A

= P
C

i.e. height of liquid is

same in both the tubes A and C.

Q.13 (2)

Bernoulli’s theorem for unit mass of liquid

2P 1

2
  


constant

As the liquid starts flowing, it pressure energy

decreases

5 5
2 2 21 2

3

P P1 1 3.5 10 – 3 10

2 2 10

  
      



5
2

3

2 0.5 10
100 10 m / s

10

 
    

Q.14 (1)

Pressure at the bottom of tank
5

2

N
P h g 3 10

m
   

Pressure due to liquid column

P
l
= 3 × 105 – 1 × 105 = 2 × 105

and velocity of water 2gh 

5

3

2P 2 2 10
400 m/s

10

 
   


l

Q.15 (4)

Upthrust – weight of body = apparent weight

VDg – Vdg = Vd,

Where a = retardation of body
D d

g
d

 
   

 

The velocity gained after fall from h height in air,

2gh 

Hence, time to come in rest,

2gh d 2h d
t

(D d)g g (D d)


   
  

JEE-MAIN

OBJECTIVE QUESTIONS

Q.1 (3)
rg(H – h)
because pressure varies with height.

Q.2 (1)
F = [rgh] [A]
= (1000) (10) (6) (10) (8).

Q.3 (2)
W

A
> W

B
as mass of water in A is more than in B

P
A

= P
B

Area of A = Area of B
or P

A
Area

A
= P

B
Area

B

or F
A
= F

B
.

Q.4 (2)

Pressure = h  g
eff.

a = g/3
g

eff
= g – g/3 = 2g/3

 P =
0.15 1000 2 10

3

  

P = 1KPa

Q.5 (2)
GivenA= 2 × 10–3, h = 0.4 m, r = 900 Kg/m3

F = mg = Vrg = (pr2h)rg
= 2 × 10–3 × 0.4 × 900 × 10
= 7.2 N

Q.6 (1)
F = mg
F = 10 N

Q.7 (4)
O(zero) all the forces passes through O
 no torque.

Q.8 (A)

Q.9 (4)

Dv = v
f
– v

i
=

m m

y x
 .
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Q.10 (2)

h g = 2P

4h

5
 g =

8P

5

After lowering P due

to liquid.

 
 
 

 P
T

=
8P

5
+ P (Atmospheric pressure)

=
13P

5

Q.11 (1)
At same depth pressure is same
So ratio P

1
: P

2
= 1 : 1.

Q.12 (1)

1

1

m g

A =
2

2

m g

A

Solving, m
2
= 3.75 kg.

Q.13 (D)

60 r
w
g = h r

l
g

 60 × 1 × g = h × 4  h = 15 cm

So, volume = Ah
= 1 × 35 = 35 cm3

Q.14 (3)

P
A

= P
B

 5 × 4 × g + x × 1 × g
= (40 - x) × 1 × g

x =10
Now, h

1
= x + 5 = 15 cm

h
2
= 40 – x = 30 cm

h
2
/h

1
= 2

Q.15 (3)
Given m = 12 kg,A= 800 cm2, r = 1000 kg/m3

P = rgh

mg

A
= rgh

4

12 10

800 10




= 1000 × 10 × h

12

80
= h

h =
1200

80
= 15 cm

Q.16 (2)
F

b
= rVg – rvg = 0

Q.17 (1)
mg = 60
.................(i)
mg – r

i
vg = 40

.................(ii)

mg vg

mg


=

2

3
or

0


= 3

where r
0

= density of the block and r
l
= density of the

liquid.

Q.18 (3)

103 ×
4

5
+ 13.5 × 103 ×

1

5
= r × 1

or r = 3.5 × 103 kg/m3

Q.19 (2)

Q.20 (D)

a

c

b

h

At equilibrium position
(abc) (dr)g = (bc) hrg
After displacing slightly x,
extra buoyancy force.
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r
net

= ((bc)x)rg

a =
xbc g

abcd




=

ad

xg
w =

ad

g

Q.21 (C)
[36 – r

l
v

l
]g = [48 – r

l
v

2
]g

g
9

36
36 i 
















 = g

48
48

0
i

























ρ
ρ

Solving, r
0
= 3.

Q.22 (1)
In stable equilibrium the object comes to its original
state if disturbed.

Q.23 (3)
As, weight = Buoyant force
mg = [100 × 6 × 0.6 g] + (100 × 1 × 4)g
 m = 760 gm.

Q.24 (2)
r

1
V=r

2
2V

m
1
= m

2

m
1
g = 0.92 Vg = m

2
g – xVg

x = 1.8 gm/cm3

Q.25 (3)

Q.26 (2)
W – v × 1 × g = W

1

W – v × x × g = W
2

 W – (W – W
1
) × x= W

2

x =
2

1

W – W

W – W

Q.27 (A)

mg (x + 2) = v × 1 × g × x
v 0.8 g (x + 2)= v × 1 × g × x
0.8 x + 1.6 = x
0.2x= 1.6
x=8

Q.28 (4)
Equilibrium Position W = F

B

W = L2h r
M

g

h = 2
M

W

L g

Q.29 (3)
Volume where metal is present

=
7800

8.9
= 1.256 × 10–3

Buoyancy = vrg = 1.5 g
 v × 1000 = 1.5
v = 1.5 × 10–3

fraction of volume =

–3 –3

–3

1.5 10 –1.256 10

1.5 10

 


× 100

= 16%

Q.30 (1)

 ×
4

3
 (R3 – r3)g = 1 ×

4

3
R3g

R

r
=

1/ 3

1

 
 
  

Q.31 (2)

Volume =
0.5

500
= 10–3m3

Buoyancy = Vg = 1000 × 10–3 × 10
= 10 N
m = 1 kg
If float = 2.5 kg, Reading = 1 + 1.5 = 2.5 kg

Q.32 (2)

___
3

Kx =

g
3

V

V =A..

Now
A g

3


+

K

3


= AA

K = 2Ag

Q.33 (C)
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h

• A

x

• B G.P. = 0

W
FB

=    AABB UKUK 

– Vxg = 0 + 0 – 0 –V’g(x + h)
gx = ’gx +’gh

x =
'h

'



  

Q.34 (2)
Apparent weight (W

app.
) = W – V 


g

Since, W
app. (Ram)

> W
app. (Shyam)

 W
(Ram)

> W
(Shyam)

Therefore, from given passage shyam has more fat
than Ram.

Q.35 (2)
V

1
> V

2
 W

app. (1)
< W

app. (2)

(Since W
app.

= W – V 

g)

Hence (2)

Q.36 (1)


Salt waver
> 

Fresh waver
 W

app. (s)
< W

app. (F)

Hence (1)

Q.37 (3)
Let 'V' be the total volume of the person
Then ;

V

4

 
 
 

(0.4 × 103) +
33 4

V 10
4 3

   
   

   
= 165

 V =
165

1100

Reading on spring balance under water is :

W
app

= [165 × 10] –
165

1100

 
 
 

[103] [10]

=150 N

Q.38 (4)
Just after the string is cut :

a =
150

165
= 0.91 m/s2 Ans.

Q.39 (3)
R = vt

= 2gD
2(H D)

g



= 2 D(H D) .

Q.40 (3)

x = 2 h(H h)

for x
max

,
dx

dh
= 0 or h =

H

2

Q.41 (1)
From continuity equation, velocity at cross-section
(1) is more than that at cross-section (2).

(1)(2)

Hence ; P
1

< P
2

Q.42 (2)
F

thrust
= av2

F
net

= F
1
– F

2
= a[2g(h

1
– h

2
)]

= a(2gh)
or F  h

Q.43 (1)

A
1

v
1

= A
2
v

2

R2 dh/dt = r2 v
....(i)

v = 2gh

....(ii)
from equation (ii) put the value of v in equation (i)

R2 dh/dt = r2 2gh



2

2

R dh

r 2gh
 = dt

02

2
h

R dh

r 2g h
 =

t

0

dt

on solving
t = 46.26 second.

Q.44 (1)
AV = constant
AV

P + gh +
21

v
2
 = constant

VP
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Q.45 (A)

g =
2

1
v2

v = 2Dg

x = V
g

)DH(2 
= 2 D(H D)

Q.46 (B)

dt

dm
= Avv

P = F
avg

. 1sec.

2Av2cos60°

1000×6×10–4×(12) ×
2

1
× 2

= 86.4 Nt.

Q.47 (1)

P

x
V

A = ax + b
Continuty equation bV = (ax + b) V

2

By bernaulies equation = P
2

+
1

2
v

2
2 = cosntant

P
2

= Costant -
1

2
v

2
2

P
2

= Costant -
1

2
  

2 2

2

b V

ax b

P
2

= Cosntant –
 

1

2

C

ax b

Where C
1

= Constant

Q.48 (2)
A

1
V

1
=A

2
V

2

0.02 × 2 = 0.01 × V
2

V
2
= 4 m/sec.

P
1
+

1

2
V

1
2 = P

2
+

1

2
V

2
2

4 × 104 +
1

2
× 1000 × 22

= P
2
+

1

2
× 1000 × 42  P

2
= 3.4 × 104 N/m2

Q.49 (2)

–22 20 10 10   = 2 m/sec.

Q.50 (2)

Q.51 (4)
Inlet = outlet

dt = a 2gh dt

h =

2

22ga


=

 
 

2
100

2 1000 (1)
= 5 cm

Q.52 (4)
Force exerted by the water on the corner
= change in momentum in 1 sec

= 2 mv

mv

mv

= 2 vL

Q.53 (3)

H

Na

a

H/2
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Force = a  
2

2gh / 2

acceleration =
agh

Na.H




= g/N

Q.54 
dt = Av dt

10–4 = 10–4 2gh h =
1

2g

h = 0.051 m

Q.55 (D)

R =
1

1

2h
2g(H h )

g


=
g

h2
)hH(g2 2

2

(H – h
1
) h

1
= (H – h

2
) h

2

H = h
1
+ h

2

For max. range =
2

H

Q.56 (2)

By Bernaulie’s Theorem

P
0
+ 4

10 10

1000 10




+1000 × 10 ×

50

100
= P

0
+

1

2
× 1000 × v2

6000 =
1

2
× 1000 × v2

v=?

v = 12 = 3.4 m/s

Q.57 (1)

Change in momentum is/sec.

2 Avv2 = 565.7 N.

Q.58 (2)

AV2 =1000 × 2 × 10–4× (10)2

= 20 N

Q.59 (3)
Energy required in one second is the power
10–1=A.V.
 10–1= 10–2 × V
V = 10 m/sec.

mgh 
1

2
mV2 = P

Here m = mass in one second

P = AVgh +
1

2
AVV3

P= AV[10 × 10 + 50]
= 15 Kwatt

Q.60 (3)

Q.61 (3)
If the liquid is incompressible then mass of liquid
entering through left end, should be equal to mass of
liquid coming out from the right end.
M = m

1
+ m

2
A

1
= A

2
+1.5A .

A × 3 = 4 × 1.5 + 1.5 A. m/s

Q.62 (2)

A
1
V

1
=A

2
V

2
(Given

1

2

r

r =
3

2
)

1

2

v

v =
2

1

A

A =




2
2

2
1

r

r
=

2
2

3

 
 
 

=
4

9

Q.63 (4)
A

1
V

1
=A

2
V

2

(1 × 10–2)2 × 3

= 100 × 
 

2–20.05 10

4


× V

2
V

2
= 48 m/sec.

Q.64 (1)
FromA

P
V

P
=A

Q
V

Q

P

Q

V

V =
Q

P

A

A
=

–2 2

–2 2

(2 10 )

(1 10 )

 

 

V
P
= 4V

Q

Q.65 (3)

dV
A 2gh

dt


Q.66 (1)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q.1 (C)
Since not touching,
So R = F

b
= 

l
(vg) = 40g.

R – R = 80g – 40g = 40g
Hence Rwill be 40g more than R

Q.2 (A)
By action – reaction, F

b
is internal

So, balance weight = (m
1
+ m

2
)g.

and extra mass = 10 g



72

Fluid Mechanics

Q.3 (D)
Force is same pressure is different

Q.4 (B)

Take area of projection from left

22 g h

2

 
=

23 g R

2

 

h = R.
2

3

Q.5 (B)

Pressure exerted by fluid at closed end B is

P = g

 force exerted by fluid at closed end B is

F = PA = g A0

Q.6 (A)

Q.7 (B)

h-x

h

x

AB
2h – x x

g/2

xg/2 + 2(2h-x)g/2 = P
B

– P
A

P
A

= (h – x)g

P
B

= hg + 2xg

xg/2 + 2(2h–x)g/2 = hg + 2xg–hg + xg

4 hg

2


–

2 xg

2


= 2xg + xg/2

2hg – xg = 5Pxg/2

x =
7

h4

Q.8 (B)

(a-x)a2 +
2

1
x a2 =

3

2
a3

(a-x) +
2

x
=

3

2
a

2

x
a  =

3

2
a

x =
3

a2

tan  =
a

x
=

g

.acc
a =

3

2
g

Q.9 (B)
For the given situation, liquid of density 2 should be
behind that of .

From right limb :
P

A
= P

atm
+ gh

P
B

= P
A

+ a
2


= P

atm
+ gh + a

2



P
C

= P
B

+ (2) a
2


= P

atm
+ gh +

2

3
a 

.... (1)
But from left limb :

P
C

= P
atm

+ (2

)gh

.... (2)
From (1) and (2) :

P
atm

+ gh +
2

3
a  = P

atm
+ 2gh h = g2

a3
 Ans.

Q.10 (A)
No sliding  pure rolling
Therefore, acceleration of the tube = 2a (since COM of
cylinders are moving at 'a')

P
A

= P
atm

+ (2a) L (From horizontal limb)
Also ; P

A
= P

atm
+ gH (From vertical limb)

 a = L2

gH
Ans.
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Q.11 (B)
As long as 

W
, pressure at the bottom of the pan

would be same everywhere, according to the Pascal’s
law.

Q.12 (B)

y =
y2

r22

Put values and get y = 2cm.

Q.13 (A)
The four piston are initially in equilibrium.As additional
force F is applied to each piston, the pressure in fluid at

each point must be increased by
A

F
so that each piston

retains state of equilibrium.

Thus the increment in pressure at each point is P =

A

F
(by Pascal’s law)

Q.14 (B)

a
g

tanq =
a gsin

gcos

 



Q.15 (C)

x
dx

3 /2

w

dP .A= rA dx . w2x

2dp xdx   

DP =
2 2 3 g

2 2

 


 

w =


g3

Q.16 (D)

3

2
gHR2

Q.17 (A)
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Q.18 (A)

mg

T

mg =A.2L× 0.75 × g
T +Axg =A.2L × 0.75 g
T =Ag [1.5 L – x]

A xg cos 









2

x
 = T cos

x 









2

x
 =  [1.5 L – x] x = 

Q.19 (B)

mg

B,Mm,v

mg

d

2mg

2m,v

g.
2

v
g.

2

v

(3M + m)g = vg
Torque balance about B

mg (d-) + vg
2



= 2 mg +
vg

2


(d – )  =

d(v 2M)

2( v 3M)

 

 

Q.20 (C)

.
5

4
a3 = M

(m + M) = a3

m =
4

5
M m =

4

M

M = 4 m

Q.21 (B)
F.B.D. of rod :
W = (0.012) (1) (2 × 103) (10) = 240 N
F

b
= (0.012) (1) (103) (10) = 120 N

Torque about O
(For equilibrium)

(240 – 120) 






 

2

sin
= 45 (cos) tan=

120

90

=
4

3
 = 37°

Q.22 (B)
Torque about CM :

F
b
.

4


= 



 =
I
1

(

r2) () () (g).

4

=

I4

gr 22  

'' will be same for all points
Hence (B).

Q.23 (A)

d
1
AL + d

2
AL =

2

3
LAd

d
1

+ d
2

=
2

d3

d
1
>

4

d3

Q.24 (B)



75

Fluid Mechanics

r

h

(W.D.)
mg

+ (W.D.)
FB

=K
– mg (H + h) + (F

B
)h = 1/2 mv

f
2

 -
3

4
r3 (H + h) g +

34
r

3

 
 

 
gh=0

– gH – gH + gh = 0
gh ( – ) = gH

H ( 1)h


 


Q.25 (A)

2

T2
+ mg = v

w
g

Q.26 (B)

g
eff

= g + a

T + mg
eff

= F
B

T = Vd(g + a) – v (g+a)

= v[(g + a) (d-)]

Q.27 (A)

Increasing the temperature of water from 20C to 30C

increases its density while decreases the density of

iron.

Hence the bouyant force increases.

Q.28 (D)

3

1
r2h

c
g =

3

1
(r/3)2

3

h
(0.8)g


c

=
27

8.0

3

1
r2h

c
g =

3

1
(

6

r
)2

6

h
× 0.8 × g +

3

1

































6

h

6

r

2

h

2

r
22

g


27

8.0
=

636

8.0


+ 












636

1

8

1
  = 1.9

Q.29 (B)
Initially
W

metal
= W

ice
= Buoyancy

V
metal

mg + V
ice


ice
g = V

d


g

V
d
=

metal m ice icev V 


  

finally volume displaced
V = V

m
+ V

w
(From ice)

= V
m

+
w

m

 = V
m

+
i i

w

V




< previous

Q.30 (B)
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P
A
=(1.2 × 0.7 × g + 0.8 × 1.2 g)

0.8 ×A
0
(x + 1.2 + 0.8) g = P

A
.P

0

x + 1.2 + 0.8 = 0.84 + 0.96
x =0.25 cm

Q.31 (B)

1-x

x

Total buoyancy
= Total Gravitation
 13 × 1 × g + 12x × 1r
= 13 × 0.6 × g + 13 1.15 × g
1 + x = 0.6 + 1.15
x=0.75m
1 – x = 25 cm.

Q.32 (A)

Velocity of efflux of water (v) = 








2

h
g2 = gh

force on ejected water = Rate of change of momentum
of ejected water.

=  (av) (v)
=  av2

Torque of these forces about central line
= (av2) 2R . 2
= 4av2 R = 4 agh R

Q.33 (B)

A
1
V

1
=A

2
V

2
or A × V

1
= 2A

2

g
or V

1
= g2

 2
2

2
1 V–V

2

1
 = g sin  









2

g
–g2

2

1 
 = g sin

on solving sin
4

3
.

Q.34 (D)

The velocity of fluid at the hole is : V
2
=

)A/a(1

gh2
22

Using continuity equation at the two cross-sections
(1) and (2) :

V
1
A= V

2
a  V

1
=

A

a
V

2

 acceleration (of top surface) = –
dh

dV
V 1

1

= – 







22 V

A

a

dh

d
V

A

a

a
1

= –
dh

dV
V

A

a 2
22

2

= –
h2

1
.g2gh2

A

a
2

2

 a
1

=

2

2

A

ag

Q.35 (B)
Pressure at (1) :
P

1
= P

atm
+ g (2h)

Applying Bernoulli's theorum between points (1) and
(2)

[P
atm

+ 2gh] + g(2h) +
2

1
(2) (0)2

= P
atm

+ (2) g (0)+
2

1
(2) v2

 v = 2 gh Ans.

Q.36 (A)
Velocity of efflux at a depth h is given by V = Volume of
water following out per second from both the holes are
equal
 a

1
V

1
= a

2
V

2

or (L2) )y(g2 =R2 )y4(g2
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4y

v1

v2

y

a1

a2

or R =
2

L

Q.37 (C)

h

v = 2gh

a1

dh

a0

0

dm dh
A a

dt dt
     –a

1
gh2

4000
dt

dh
= 1 × 2 – 0.5 gh2

for t =
dt

dh
= 0

2 = 0.5 gh2

h = 0.8

Q.38 (D)

Initial

ag =
2

1
V2

V
0
= 2ga

Now V =
2

a
2 =

0

4

V

2

Q.39 (C)

A

t + dtt

h

dh

Volume decrease in
dt time = Adh

Volume course out in
dt time = avdt

2gh
a

Volume decrease = Volume outlet

Adh = a gh2 dt

dt

dh
=

A

gh2a


H/

H

dh

2gh



 = – 
t

0

dt
A

a

t
1

=
H

H
 
  

  

Similarly t
2
=

H



t
1

= t
2
2

H


= H

 = 4

Q.40 (A)

Q.41 (D)
We know that

t
0

=
2H

g

H

When height become 4H then time

t' =
 4H

2
g

t' = 2t
0
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Q.42 (C)
R = vt

v =  2 2H x g

t =
 2 H x

g



R
max

=
dR

dx
= 0

2H

H

x

& we get

x =
H

2

Total height from ground = H +
H

2
= 1.5 H

Q.43 (D)

R =
g

H2
10g2  .

............. (1)

Now gh + P
O

+ P
E
= P

O
+

2

1
V2

V2 = 2gh +
E2P



R’ =
E2P 2H

(2g10) ( )
g




.....(2)
From (1) & (2) P

E
= 3 atm.

Q.44 (D)

v
1

= 2/gh2 = gh

for v
2

gh + 2g
2

h
=

2

1
2.v2

2

2gh = v
2

2

v
2

= gh2

Q.45 (C)
A

1
V

1
=A

2
V

2

10–2 × 2 = 0.5 × 10–2× V2

V
2
= 4 m/sec.

P
A

+
2

1
V

A
2 = P

B
+

2

1
V

B
2

8000 +
2

1
1000 × 22

= P
B

+
2

1
1000 × 42

P
B

= 2000 Pa

Q.46 (A)

mg =
2

2


2

2

d








.2gH.

d =
2 M

H





Q.47 (C)
FromA

1
V

1

Where V
1
 to area

V cos 60°

60°

ratio =
V

V cos60
= 2

Q.48 (B)
FromA

1
V

1
=A

2
V

2

(1) (V
1
) (

2

1
)V

2


2

1

V

V


2

1

V
2
=2V

1

Now,
V

2
2 = V

1
2 + 2gh

4V
1
2=V

1
2+2(10) 









100

10
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V
1

=
3

2

Now volumetric rate of flow
=A

1
V

1

=
3

260

10

101
3–

4–




= 4.9 lit/min.

In a static fluid, pressure remains same at the same
level, ie, pressure do not vary with x-coordinate.
Hence (C).

Q.2 (A, C, D)
P = r(2h)g

2A

F
= r (2h) g

F
base

= 2h r g A
2

F
wall

= h r g [A
2

– A
1
], at the level x

Q.3 (C,D)
Let completely submerged in water, then
Fb = 1000 > mg(920) So, not possible
Let complete in oil
Fb = (0.6) (4) (1000 + (1) (6) (100) = 840
Fb < mg So, not possible
So, let 'x' part in oil and remaining in water
920 = [(1) (10 – x) + (0.6) (x)] 100
9.2 = 10 – x + 0.6 x
0.4 x = 0.8
x = 2 cm.

Q.4 (B,C)
PV = constant
(Assumed isothermal process)

Q.5 (A)

(A) As, dm = AW v dt


dt

dm
= AAWv


dt

dm
= VW 

4

D2

where ‘D’ is the diameter of stream.

Q.6 (D)

V1A1 = V2A2

4

Dv
2

00
=

4

Dv 2
 D =

v

v
D 0

0 .

Q.7 (B)

v = )xb(g2gh2  .

Q.8 (A)

Applying continuity equation at points with diameter

D0 & D :

=












4

D.
.gb2

2
0

=













4

D
)xb(g2

2

 D = D0

4/1

xb

b











Q.9 (B)

Solving the preceding formula for the tank height h
gives :

h = x(D/D0)
4/(1 – (D/D0)

4) = x D4 / (D0
4 – D4)

substituting the given parameter values gives
h = (0.3 ) (0.0094) / (0.014 – 0.0094) = 0.57 m

So the height of the water above the tap is 0.57 m or 57

cm.
One way of measuring a person’s body fat content is
by “weighing” them under water. This works because

fat tends to float on water as it is less dense than
water. On the other hand muscle and bone tend to sink

as they are more dense. Knowing your “weight” under
water as well as your real weight out of water, the
percentage of your body’s volume that is made up of

fat can easily be estimated. This is only an estimate
since it assumes that your body is made up of only
two substances, fat (low density) and everything else

(high density). The “weight” is measured by spring
balance both inside and outside the water. Quotes are
placed around weight to indicate that the measurement

read on the scale is not your true weight, i.e. the force
applied to your body by gravity, but a measurement of
the net downward force on the scale.

Q.10 A - p ; B - q ; C - t ; D - s
Pressure varies with height  P = gh

and is horizontal with acceleration  P = a
so on (A) gh part is zero while average force of ax is

][
2

a0 2









 

= )(
2

a 2


=
2

)( 3
a =

2

ma

In (B) a part is zero while average force of gx is

 2

2

g0










 
=

2

g
(3)

Q.1 (A, C)
MCQ/COMPREHENSION/COLUMN MATCHING

JEE-ADVANCED
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=
2

)( 3
(g) =

2

ma

Similarly for other part.

Q.11 A – q ; B - p ; C - r ; D - s

(A) On ABCD avg pressure = 






 

2

gh0 1

So F = ]h[
2

gh1 







=

2

gh2
1 

(B) No contact of 
2

and not any pressure on ABCD

due to 
2

(C) On CDEF due to 
1
, at every point pressure is 

1
gh

so average is also 
1
gh

so F = (
1
gh) (h) = 

1
gh2

(D) On CDEF force due to liquid of density 
2

is

 
2

gh2
2 

NUMERICALVALUE BASED

Q.1 [0800]
In both cases, Weight = Bouyant force

Initially, bVg =w
gV

3

2








b =

3

2
w

After wards, bVg = oil
g

6

V5









 w3

2
 = oil ×

6

5

 oil =
5

4
w =

5

4
× 100 = 800 kg/m3. ]

Q.2 [5]
30 – (25 + x0) = 5 – x0

x0

25 + x0 30cm

V =
4.0

32
= 80 cc

A = 16 cm2

kx0 + 103 × 16 × 10–4 × x0 × 10 = 32 × 10–3 × 10
x0 (48 + 16) = 32 × 10–2

x0 =
64

32
cm = 5 mm

Q.3 [400]
PL × 6 × 102 g = 600 g
mg + 600 g = PL × 1000 g
m = 1000 – 600 = 400 gm

Q.4 [250]

 
06.0

F

8.05.1

g500









 F = 250 N

Q.5 [0006]
Mg = mg + B

Mg = mg + p2 ×
1p

M
g

M 









1

2

p

p
1 = m = 6 kg

Q.6 [720]

(R2H –
3

2
R3) × d × g

R2 





 R

3

2
H × 104

= × 0.09 × 104 





 3.0

3

2
1

 × 900 × 0.8 = 720

Q.7 [40]

mg =1 × 0.5 V0g 1 =
0V

m2

mg = 2 ×
3

V0 g  2 =
0V

m3

 =
V2

VV 21 
=

2
21 
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mg = Vg =
2

Vg)( 21 

 m= V
V

m3

V

m2

2

1

00










m =
0V2

mV5

V =0.4 V0  40%]

Q.8 [6]
A1v1 = A2v2

3 × 30 = N × 3 × 10–7 × 0.05

N
05.0

103 8




N = 6 × 109

Q.9 [2375]
A

1
v

1
= A

2
v

2

10 × 5 = 5 × v
2

v
2
= 10 m/s

pg

p1
+

g2

v2
1

=
pg

v2
+

g2

v2
2

4
1

10

p
+

20

25
= 4

5

10

102
+

20

100

4
1

10

p
= 25 – 1.25 = 23.75

p
1
= 2375 × 102 Pa]

Q.10 [100]

v = gh2

A
100

A

dt

dp
=

dt

dm
v

= 
100

A
v2

=
100

A
× 2gh

p =
100

A
× 2g  hdt =

100

A
× 2g  

dh

dt
h × dh

dt

dh
× A = gh2 ×

100

A

dt

dh
=

100

gh2

p =
5

A
100  gh2

h
dh =

20

A
× 20  dhh =

20

A
×

3

H 2/3

× 2

= A 20 ×
3

2
H3/2

= 103 × 3 × 52 ×
3

2
× 55 = 105 = 100 kNs

KVPY

PREVIOUS YEAR’S

Q.1 (B)

m

F.B.D

1Vg kx1

Vg Vg

kx2
2Vg

kx
1
+

1
Vg =Vg

....(1)
kx

2
+ 

2
Vg = Vg

....(2)
from (1) and (2)

2 1 1 2 1 2 2 1

1 2 2 1

x x x x

x x x x

   
  

 
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Q.2 (B)

buyount force B = V
3

cube

3sphere

V a
g,

4V
R

3

l 



but it is given 6a2 = 4R2

cube

sphere

V
so,

V 6




Q.3 (A)
All are nearly at same height hence P

1
= P

2
= P

3

Q.4 (D)
In an evacuated chamber, in absence of air, buoyancy
force due to air on box is absent.

Q.5 (B)
According to Bernoulli theorem
In the region of narrow cross section of pipe, KE of

fluid will be greater and pressure energy will be lesser.
 less pressure results into larger in size of air bubble
and greater KE results its greater speed.

Q.6 (D)

Blood pressure is gauge pressure = 190 mm Hg

Atmospheric pressure = 760 mm Hg

Actual pressure = 190 + 760 mm Hg = 950 mm Hg = 1.25

× 760 mmHg

Q.7 (C)
Since 

i
= 0.9 

w

watch
ice 8(0.9)m

0.8m

Minimum Length required = 0.8m.

Q.8 (D)
Since bucket and water both are in state of free fall so
water will not come out of the hole.

Q.9 (A)

Q.10 (C)

1.7 m
1.3 m

Pressure at the heart level = 100 mm of Hg = 13.3 kPa

(given)

Pfoot = Pheart + gh

= 13.3 + 103 × 10 × 1.3 = 26.3 kPa

Phead = Pheart – gh

= 9.3 kPa

foot

head

P 26.3
3

P 9.3
 

Q.11 (C)

e

2H 2H
R V 2gh 2 hH

g g
  

So velocity V = –
dR d h

2 H
dt dt

 

V = –
1 dh H dh

2 H h
2 dt h dt

  .......(1)

NowAVe = Rate of flow of volume

0

dh
A 2gh A

dt

 
  

 
.......(2)

from (1) and (2)

0

H A 1 1
V 2gh 2 10 5

h A 100 10
     m/s

Q.12 (D)

hh 2 3

1

00

x x
g(h x)[Ldx].x gL h

2 3

 
       

  

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3h
gL

6
 

h/2h/2 2 3

2

00

h L L hx x
g x dx x g

2 2 2 4 3

    
          

      


3 3
3L 1 1 gLh 8 gLh

g h
2 16 24 2 16 24 16 6

   
         

So, 1

2

16





Q.13 (B)

v2

v1

Using equation of continuity

A
1
V

1
=A

2
V

2

where A
1

& A
2

are cross-section area of region

I & region-II.

as A
2

< A
1

V
2
> V

1

Using Bernouilli.s equation

21
P V

2
  = constant

as V
2
> V

1

P
2
< P

1

therefore pressure will be lower at constriction.

Q.14 (B)

Let mass of each coin be m.

Location of center of mass after N coins are kept on lid

from bottom of container is

40m 0 Nm 9 9N
cm

(40 N)m 40 N

  


 

Also height of submerged portion after keeping N coin

on lid will be,

3(40 N)
cm

40



Equilibrium will just be stable if

3 (40 N) 9N

40 2 (40 N)






 3N2 – 480 N + 4800 = 0N = 10.72

Q.15 (C)

i

r

1.75

0.5

x

4–x

y 1–y

1.33sini = sin r =
2

53
....(i)

Also, tan r =
2 1 y 2x 1

y
7 4 x 7

 
  


.....(ii)

 From equation (i)

2 2 2

2 2

1.33y 2
(1.33) 53y 4(4x y )

53y x

   


 89.7517 y2 = 4x2y =
2x

89.7517
....(iii)

From equation (ii) & (iii),

2x 1 2x
14x (2x 1)9.47

7 89.517


   

x=1.92

 volume of water filled = pR2x

= (3.14 × 12 × 1.92) m3

Qt = 6.0288 [Q is volume flow rate]

 t = 60.288 sec

so option C is the nearest value

JEE-MAIN

PREVIOUS YEAR’S

Q.1 (2)

Stress is developed only if the expansion is hindered.

Q.2 [25600]

Initially
1

100g

A =
2

mg

A .....(i)

Initially
1

Mg

16A = 2

mg

A

16

 
 
 

.....(ii)

100 16

M


=

1

16
= M = 25600kg
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Q.3 (1)


A
> 

B

Length of both strips will decrease
L

A
> L

B

Q.4 (3)

Q.5 [6]

Q.6 (2)

r1
r2

h

x
PA PB

We have P
A

= P
B
. [PointsA& B at same horizontal level]

atm atm

1 2

2T 2T
P – g(x h) P gx

r r
      

1 2

1 1
g h 2T –

r r

 
    

 

–2

–3 –3

1 1
2 7.3 10 –

2.5 10 4 10

 
      

–2 3

3

2 7.3 10 10 1 1
h –

2.5 410 10

    
     

= 2.19 × 10–3 m = 2.19 mm
Hence option (2)

JEE-ADVANCED

PREVIOUS YEAR’S
Q.1 (A), (B), (D)

For equilibrium
d

A
vg + d

B
vg = d

F
vg + d

F
vg

 d
F

=
2

dd BA 
 Option (D) is correct

to keep the string tight
d

B
> d

F
and d

A
< d

F

Q.2 (A,D)

On small sphere

g)2(R
3

4
kxg)(R

3

4 33 

..(i)
on second sphere (large)

kxg)2(R
3

4
g)3(R

3

4 33 

...(ii)
by equation (i) and (ii)

x =
k3

gR4 3

Comprehension (Q. No. 3 to 4)

Q.3 (C)
A

1
V

1
=A

2
V

2
A

1
= 400 A

2

400 (5 × 10–3) = V
2

  s/m22V  (C)

Q.4 (A)
Pressure at A and B will be same

ghv
2

1
Pv

2

1
P 2

0
2
aa0  
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gh2vv a
a 








Q.5 (C)

Match the column

When lift is at rest:

(P) g
eff

> g

d = 21hh4 = 1.2 m

(Q) g
eff

< g

d = 21hh4 = 1.2 m

(R) g
eff

= g

d = 21hh4 = 1.2 m

(S) g
eff

= o
No water leaks out of the jar.
(C) P—1; Q—1; R—1; S—4

Q.6 (B)
h

1
+h

2
=0.29×2+0.1

h
1
+h

2
=0.68 ....(1)

 P
0
+

k
g(0.1) +

w
g(h

1
–0.1)[

k
=density of kerosene &


w
=density of water]–

w
gh

2
=P

0

 
k
g(0.1)+

w
gh

1
–

w
g×(0.1)

= 
w
gh

2

800×10×0.1+1000×10×h
1

–1000×10×0.1=1000×10×h
2

10000(h
1
–h

2
)=200

 h
1
–h

2
=0.02 .....(2)

 h
1
=0.35

 h
2
=0.33

So
1

2

h 35

h 33


Q.7 [9]

with respect to train

vt

v

Applying Bernoulli’s equation

2 2
0 t

1 1
P v P v

2 2
    

 2 2
0 t

1
P P v v

2
    ....(i)

From equation of continuity

Also, 4S
t
v

t
=v×3S

t t

4
v v

3
  ....(ii)

From (i) and (ii)

2
2 2 t

0 t t

7v1 16 1
P P v v

2 9 2 9

 
      

 

N=9

Q.8 [4]

v g

mg

480×g = v
1
g

(480–N)g=v
2
g

2

1

480 N

480





1 22 0

0

1 0

h h 50h /h
h 6000

h /h

N e
1 e e

480 e





 
    

 

N 50 50 480
1 1 N 4

480 6000 6000


     

Q.9 (A,D)

h

A r
B

R

O

R–h

InOAB
R2=(R–h)2+r2

R2=R2–2hR+h2+r2  2hR=h2+r2

2 2h r
R

2h


 

Now considering equation of surface
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2 2

0

r
y y

2g


 

2 2r
h

2g




Now using :
2 1 2 1

v u R

   
 

 
1 4 1 4/3

v 3 H h R


  

 
1 1 4

v 3R 3H
  

2

1 2h 4

v 3r 3H
  

21 4 H
1

v 3H 4g

 
    

 

123H H
v 1

4 4g


 

   
 

Q.10 (AC)

Q.11 (0.30)

Q.12 (10.00)
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Surface Tension and Viscosity

Q.1 (1)

Q.2 (1)

Q.3 (1)

Weight of spiders or insects can be balanced by vertical
component of force due to surface tension.

Q.4 (4)
T = T

0
(1 – t)

Q.5 (1)

Energy needed = Increment in surface energy

= (surface energy of n small drops) – (surface energy

of one big drop)

= n4r2T – 4R2T = 4T(nr2 – R2)

Q.6 (3)

Work done to increase the diameter of bubble from d to D

 2 2 2 2 2W 2 D d T 2 (2D) (D) T 6 D T         

Q.7 (3)

2 2

2 2
2 1

2 1
W 8 T(r r ) 8 T

    
         

      


3

W 8 30 720 erg   


Q.8 (1)

Q.9 (3)

Q.10 (2)

Q.11 (3)

Angle of contact is acute.

Q.12 (3)

Since
1

P
R

 

Q.13 (2)

Q.14 (1)

4T
P

r
  

1

2

P
4

P






 2

1

r
4

r
 and

3

1 1

2 2

V r 1

V r 64

 
  
 

Q.15 (3)

3
2

3

2T 2 70 10
P 140 N / m

R 1 10





 
   



JEE-MAIN

OBJECTIVE QUESTIONS

Q.1 (2)

After the portion A is punctured’ the thread has 2

options as shown in the figures.

or

Clearly, due to surface tension , the soap film wants to

minimize the surface area which is happening in option

(ii).

Hence the thread will become concave towards A.

Q.2 (3)

We know that surface energy

U
S

= T × Area.

Here. as 2 films are formed because of ring. so

U
S

= T × 2 × (A)

= 5
N

m
× 2 × 0.02 m2.= 0.2 J

Q.3 (4)

Insects use the surface tension force to keep floating.

Q.4 (3)

n ×
3

4
r3 =

3

4
R3 ......(i) { volumes are equal

andA = –[4R2 – n.4r2]

where W = (A) × T.
= –4[n2/3r2 – n.r2] × T = 4r2T. n2/3 [n1/3–1].

Now R2 = n2/3 . r2 ; so W = 4R2T[n1/3 – 1].

ELEMENTRY
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Q.5 (4)
In the satellite, g

eff
becomes zero but the surface tension

still prevails. Hence the water will experience only

surface Tension force which will push it fully outward.

Q.6 (1)
Since the contact angle in both cases remains the same.

F
S

cos = Mg  T × 2 R cos = Mg
.......(i)
after doubling the radius

T × 2  (2R) cos = M’g
.......(ii)
= M’ = 2M.

Q.7 (2)
Water will rise to a height more than h when downward

force (mg
eff

) becomes lesser than mg.
so in a lift accelerating downwards, g

eff
is (g –a

0
). Hence

capillary rise is more.

On the poles g
eff

is even more than g. Hence the
capillary will even drop.

Q.8 (1)

When the capillary rise is ‘h’ that means the force of
surface tension (F) is supporting the height ‘h’ of
liquid level.

Now if the whole capillary is taken out the liquid tries

to come out due to gravity from the bottom point.

Fs

Fs

But force of surface tension ‘F’ now becomes 2F in

the upward direction. Hence 2F can support a maximum

of ‘2h’ height even if  is very high. So ‘h’ will be 2h if

 > h & will be h +  only if is lesser than h.

Q.9 (2)

Fs
Fs

h

By balancing forces T × (2 ) × (cos) = d x

 h g

we get h =
2T cos

xdg


.

Q.10 (1)

Energy released = (A) ×  { = surface tension}

Let us say n no. of small drops coalesced.

 n.
3a

3

4
 =

3b
3

4


 b = a.n1/3  n =
3

a

b









A = 4b2 – n.4a2 {this is –ve, hence

energy is released}

= 4a2 (n2/3 – n)

 U = 4a2T (n – n2/3).= 4a2T 




























23

a

b
–

a

b

This U converts to K.E.

Hence
3b

3

4
.

2

1
 V2 = 4a2T 2

2

a

b











a

a–b
.

 V = 








 b

1
–

a

1T6

Q.11 (4)

P
A

has to be equal to P
B
. P

A
= P

0
+ gh .....(i)

Now P
C

– P
0

=
4

r



 soap bubble has 2 films

and

P
C

= P
B same air is filled
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 P
0

+
4

r


= P

0
+ gh ....(ii)

get =
ghr

4



Q.12 (3)

When charge is given to a soap bubble (whether

positive or negative), these charges experience

repulsive forces due to the other charges. Hence they

tend to move out. Hence the size of bubble increases.

Q.13 (4)

Equating pressures on the shaded portion :

1

4

r


–

2

4

r


=

4

R



get R =
2 1

2 1

r r

r r

Q.14 (2)

By equating volume :
3R

3

4
 =

3r
3

4
8 

get r = R/2.

Now pressure difference in A =
R

4

and that in B =
2/R

4
= 2 × pressure difference in A.

Q.15 (2)

Pinside bubble – PA =
r

T2

and PA = Patm + gh.

 Pinside bubble = P + gh +
r

T2

Q.16 (3)

PA = P0 +
r

4
; PB = P0 +

R

4
{P0 = atmospheric

pressure}.

Clearly PA > PB ; so air will flow fromAto B.

As r decreases; pressure will become more and hence

more flow of air fromA to B.

Ultimately bubble A collapses and B becomes bigger

in size.

Q.17 (3)

Q.18 (1)

P1
Before r

P2

After r/2

Lets say, initially, the pressure due to air inside the

bubble is P
air

.

 P
air

– P
1

=
4T

r
..........(i)

Finally, the radius becomes half ; so volume becomes

8

1
th and hence pressure becomes 8P

air
.

So, 8P
air

– P
2

=
4T

r / 2
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.........(ii)

Solving (i) and (ii)

get P
2
= 8P

1
+

24r

r
.

Q.19 (4)

When the excess pressure at the hole becomes equal

to the pressure of water height ;then only water will

start coming out of the holes : [atm pressure on both

sides is same].

 hg =
2

r



 h =
2

rg





=

–3

–3

3

N
2 70 10

m
kg 0.1

1000 10 10
2m

  

 
   
 

= 0.28 m.

Q.20 (3)

x

v

800 =
1.5

A.
x



2400 =A
v

x

v = 4.5 cm /sec.

Q.21 (4)

F
R

= K .r2 . v2 =
34

r g
3

 

v r

Q.22 (2)

2
3 34 4

r R
3 3
  

R = 1/ 32 . r

v r2

v 
3/14

Q.23 (4)

V
T

=  
22 r g

9




 
2

0.003 102

9 1.260


 (1260)

v
T

= 0.02 m /sec.

 Time =
0.1

0.02
= 5 sec.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q.1 (D)

The small portion of film is approximately a straight

part. Balancing forces on it:

F denotes tension. T denotes surface tension.

T × 2 (d) is the surface tension force because 2 layers

are formed.

So 2 F sin (d) = T × [2 × R (2 d)]

we get ; (sin (d)  d. for small d)

so F = T × 2 R.

Q.2 (C)

The FBD of disc is shown in the figure. The net upward

surface tension force

= F
S

cos = (T × 2 r) cos .

so F
S

cos + W = mg = W
disc
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= F
S

cos = (T × 2 r) cos .

F
S

cos + W = mg = W
disc

Q.3 (B)

cos =
R

hR 

 = cos–1 






 

R

hR

Q.4 (A)

In the shown diagram.

P
C

= P
B

P
0

–
1r

T2
+ gh = P

0
–

2r

T2

Here, we may not know in advance which tube will rise

above the other, but lets say the liquid level is higher

in thinner tube.

so 2T 










12 r

1
–

r

1
= – gh.

 T = )r–r(2

rrgh

12

21

as r
2

> r
1

; so we assumed correctly

Q.5 (B)

R

T2
= h  g

Radius of Meniscus

Q.6 (A)

Let (a) and (b) coalesce to form (c).

By mole conservation :

P
a
. a3 + P

b
. b3 = P

c
. c3 . ...... (i)

Also P
a
= P

0
+

a

4
........(ii)

P
b
= P

0
+

b

4
.......(iii)

P
c
= P

0
+

c

4
.......(iv)

Putting there values :

3
0

3
0

3
0 c

c

4
Pb

b

4
Pa

a

4
P 







 








 








 


     0cba4cbaP 222333
0 

also c3 – (b3 + a3) =
4

v3
and c2 – (a2 + b2) =

4

s
.

Putting there values :

P0













4

v3
+ 4T 













4

S
= 0  3P0V + 4ST = 0

Q.7 (B)

Clearly the surface tension force on

A soap - bubble with a radius ‘r’ is placed on another

bubble with a radius R (figure). Angles between

Hemisphere = F
S
= (2T). (2r) {2 layers are formed}.

 F
S

= 2 × 500
m

N
× 2 × 3.14 × 5m.

 30,000 N 3000 kg.wt.
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Q.8 (C)

hg =
1.0

2T2 

h × 1000 × 10 = 3

3

101.0

210752








h =
1000

300
- 0.3 m = 30 cm.

Q.9 (C)

P
exi

=
R

T4

4R2d =
3

4
r3

(3R2d)1/3 = r

P
ef

=
r

T2
 Ratio =

r2

R
=

3/1

d24

R









Q.10 

 a2

t

v
= mg sin 37º

 a2

t

v
=

3 3
a g.

5


 =
3 agt

5v



Q.11 (A)

a
avg

= Tv 0

T



a
air

= Bmg f

m


= BFg

m
 = g –

L L

S S

v g
g g

v g

 
 

 

a
air

=
s L T

s

g( ) 2v

T

  




a
air

=
s L

s

g( )  

 =
T

9
.

r

9

2
.2

2


(

s
– 

r
)

T =

24 r

9





Q.12 (A)

mg = m’g + 6   r v

r

'mm 
× v

Q.13 (C)

a = g – Lv g

m


– 6 r v

straight line

Q.14 (D)

Q.15 (B)

F = A
dx

dv

= 1 × 100 × 10–4 × 3

2

101

107








F = 0.7 N

Force of cohesion keeps the molecules of a material

bounded together and does not let them stick to the

solid as force of adhesion is lesser.

Hence

Q.2 (A, B, D)

Nature of liquid and material tube determine whether

force of cohesion is more or force of adhesion is more.

The inner radius also determines the rise of capillary

as

h = gr

cosT2




depends on radius r..

If the length is not sufficient rise will be depends length

also.

JEE-ADVANCED

MCQ

Q.1 (A,B,C)



93

Surface Tension and Viscosity

Q.3 (A, D)

When ever two drops coalesce to make a bigger drop.

surface area is reduced, hence energy is released.

NUMERICAL VALUE BASED

Q.1 [6]

2 (r1 + r2) T = gH))rr(( 2
1

2
2 

rod

H

 g)rr(

T2
H

12 


 H = 6 cm

Q.2 [574]

Q.3 [1300]

Q.4 [4]

Q.5 [8]

Mg – T – 6r1v = 0

mg

T

T

Mg

mg + T – 6r2v = 0

 
)rr(6

grr
3

4

21

2
2

3
1




= v

v =
9

2
(r1

2 – r1r2 + r2
2)



g

T = Mg – 62r1 ×
9

2
(r1

2 – r1r2 + r2
2)



g

=
3

4
r1

3 × g –
3

4
g [r1

3 – r1
2r2 + r2

2r1]

=
3

4
gr [r1

2 r2 – r2
2r1]

=
3

4
rgr1

2














1

2
2

2 r

r
r

2dr

dT
= 0

3

4
gr1

2 0
r

r2
1

1

2 













r1 = 2r2

m

M
= 8

Q.6 [50]

6rv = B =
3

4
r3PL g

 =
9

2
r2

v

gPL

=
9

2
×

7.0

100075.1)9.0( 2 
= 50 poise

KVPY

PREVIOUS YEAR’S
Q.1 (A)

2 mdv
mg ' kv

dt
 

Q.2 (C)
Check dimensionally

Q.3 (D)
Let X is thickness of soap film for equilibrium.
Gravity force = buoyancy force

4

3
(10–2)3×0.18 + 4(10–2)2


4

3
(10–2)3 (1.23)


4

3
(10–2) (x) (1000)


4

3
(10–6) (1.08)
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1000 kg/m3

1.23 kg/m3

0.18 kg/m3

 (105) x = 0.36
 x = 0.36 × 10–5

 x = 3.6 × 10–6m

Q.4 (C)
Due to soap bubble surface tension is reduced
therefore in that area. Black paper powder will sink.

Q.5 (D)

21 8T
R 4 RT

2 R
     



(Here in question  is asked)

Q.6 (A)
F

a
= K

a
v2R2 = K

a
v2M2/3 & W = Mg

When velocity becomes constant

W = F
a

Mg = K
a
v2M2/3

 2 1/3 1/6v M v M  

1/6
1/61 1

2 2

v v250
(2)

v 125 v

 
    

 

Q.7 (B)

The steel ball will get terminal velocity when the net

force on the ball is zero. So, in distance–time graph,

slope become constant.

From graph :

0.4 0.3
V 0.33 m / s

1.9 1.6


 



JEE-MAIN

PREVIOUS YEAR’S

Q.1 (1)

n
4

3
r3 =

4

3
R3

 1/3n r = R

u loss

= T (change in surface area)

= T(n4r2 – 4R2)

= T4ƒà (nr2 – R2).

U = 4T

3
2 2R

r R
r

  
  

   

U = 4T

3
2R

R
r

J

 
 

 

U

V


=

3
2

3

R
4 T R

r

4
J R

3

 
  

 

 
=

3T

J

1 1

r R

 
  

Q.2 (4)
The nature of flow is determined by Reynolds Number.

Re =
vD
 =

Aη

QDρ

η

ρ(Q/A)D


density of fluid ; coefficient of
v velocity of flow viscosity
D Diameter of pipe

   
 
  

From NCERT
If Re < 1000 flow is steady
1000 < Re < 2000 flow becomes unsteady
Re > 2000 flow is turbulent

 

 

 
  

   

3 2
3

e initial 2 2 3

0.18 10 1 10
R 10

(0.5 10 ) 60 10

=382.16
 

 

 
  

   

3 2
3

e final 2 2 3

0.48 10 1 10
R 10

(0.5 10 ) 60 10

=1019.09

Q.3 (1)
Excess pressure at common surface is given by

Pex = 4T
 

 
 

1 1

a b
=

4T

r

  
1 1 1

r a b




ab
r

b a

Q.4 (3)

Q.5 (1)

Q.6 (3)

Q.7 (2)
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JEE-ADVANCED

PREVIOUS YEAR’S

Q.1 (D)

Q.2 (AD)
Consider a body of density 

b
kept in density

 whose viscosity is h and terminal velocity V. Then

viscous mg buoyancyF F F 0  
  

3 3
viscous b

4 4ˆ ˆF R ( j) R ( j) 0
3 3

       




3 3
viscous b 6

4 4ˆF ( ) R ( j) 6 RV ( ) R
3 3

          




 If 
b

> 
1

then viscous

1
F V 




& if b  

viscosF 


as per given diagram we can say


2
> 

1
; 

1
< 

1
& 

2
> 

2


2
> 

2
< 

1
> 

1

 If we put P in L
2
where P

2

1
V 




when 

1
< 

2

vis cousF 


PV 


 If we put Q in L
1

where Q

1

1
V 




when 

2
< 

1

vis cousF 


PV 


P 1
P Q

2Q

V
& V V 0

V


   




 



Q.3 [3]

 22

9
T

r g
V

 






 

 

2

2

1 8 0.8
3

1 1
3 8 1.6

2 2

P

Q

V

V


  

 
   
 

 

Q.4 [6]

R = K1/3r

U = S.K.4r2–S.4R2

2
2

2/3

R
U 4 S K. R

K

 
    

 

= 0.1 × 10–4[K1/3 –1] = 10–3

K1/3 – 1 = 102

K1/3 = 101 = (10)1/3= 6

Q.5 (A,C)

2
gh

R


  [R = Radius of meniscus]

h =
2

R g




R =

r

cos

[r = radius of capillary,  = contact angle]

h =
2 cos

r g

 



(A) for given material,  = constant

h
1

r


(B) h depend on 

(C) if lift is going up with constant acceleration,

g
off

= (g + a)

h =
2 cos

r (g a)

 

 
It means h decreases.

(D) h is proportional to cos Not 

Q.6 (A, C, D)

Viscous force is given by
dv

F A
dy

  since h is very

small therefore, magnitude of viscous force is given by

Dv
F A

y
 



0
0

Au
F F & F u ;

h


     



96

Surface Tension and Viscosity

1
F ,F A

h
 

Since plate is moving with constant velocity, same force

must be acting on the floor.

Q.7 (A,C,D)

h = 1 –3

2T cos 2 0.075 cos0º
;h

gR 1000 10 0.2 10

  


   

 h
1
= 75 mm (in T1) [If we assume entire tube of T1]

 h
2
= –3

2 0.075 cos60º

1000 10 0.2 10

 

  
= 37.5 mm (in T2) [If we

assume entire tube of T2]
Option (1) : Since contact angles are different so cor-
rection in the height of water column raised in the tube
will be different in both the cases, so option (1) is cor-
rect
Option (2) : If joint is 5 cm is above water surface, then
lets say water crosses the joint by height h, then:

 P
0

–
2T

r
+ gh + g × 5 × 10–2

= P
0

 cos =
R R

,r
r cos




g (h + 5 × 10–2) =
2Tcos

R



 h =
2

–3

2 0.075 cos60
– 5 10

0.2 10 1000 10

 


  

 h = –ve, not possible, so liquid will not cross the
interface, but angle of contact at the interface will
change, to balance the pressure,
So option (2) is wrong.
Option (3) : If interface is 8 cm above water then water
will not even reach the interface, and water will
rise till 7.5 cm only in T1, so option (3) is right.
Option (4) : If interface is 5 cm above the water in ves-
sel, then water in capillary will not even reach the
interface. Water will reach only till 3.75 cm, so option
(4) is right.

T2

T1



r

R


h

5cm

Q.8 [3.74]

h/2

Pressure at the bottom of disc =pressure due to surface
tension

1 2

1 1
gh T

R R

 
   

 

R
1
>>>R

2

So
1 2

1 1

R R
 and R

2
=h/2

1 2

1 1 1
gh T T 0

R R h / 2

   
       

  

2 2T
h

g



3 4

2T 2 0.07 14 100
h

g 10 10 10 100

 
  

  

h 14mm 3.741 

Q.9 (A,B,C)
n

1
>>(n

1
–n

2
)=n

1
1

A

n RT
p

N
 2

2

A

n RT
p

N


F=(n
l
–n

2
)k

B
TS=nk

B
TS(A)

Bn k TS
V






Force balance  Pressure ×Area = Total number of
molecules × v

B 1n k TS n S v  

1 Bn v nk T    (B)

Total number of molecules/sec
 1n vdt S

dt


B
1

n k TvS
n vS

v


 

 

Bk Tn
S

  
   

  
(C)

Asn will decrease with time therefore rate of molecules
getting transfer decreases with time.


