Calorimetry and Heat Transfer

ELEMENTARY

Q. 1 (1)

Water equivalent $=\mathrm{m} \times \mathrm{c}=400 \times 0.1=40 \mathrm{~g}$
Q. 2 (2)

Resultant temperature is $0^{\circ} \mathrm{C}$ while ice will not melt.
Q. 3 (4)

Utensil should have low thermal resistan ce $\left(\mathrm{R}=\frac{\ell}{\mathrm{KA}}\right)$ and low specific heat so that heat loss is less
Q. 4 (3)

$$
\begin{aligned}
& \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\frac{\ell_{1}}{\mathrm{~K}_{1} \mathrm{~A}_{1}}}{\frac{\ell_{2}}{\mathrm{~K}_{2} \mathrm{~A}_{2}}}=\frac{\frac{\ell}{\mathrm{K} \pi(2 \mathrm{r})^{2}}}{\frac{2 \ell}{\mathrm{~K} \pi(3 \mathrm{r})^{2}}}=\frac{9}{8} \\
& \because \mathrm{I}=\frac{\Delta \mathrm{T}}{\mathrm{R}} \Rightarrow \mathrm{I} \propto \frac{1}{\mathrm{R}} \\
& \text { so } \frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=\frac{8}{9}
\end{aligned}
$$

Q. 5 (2)

Q. 6 (2)

$$
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}=\frac{2 \ell}{\mathrm{KA}}=\frac{\ell}{\mathrm{K}_{1} \mathrm{~A}}+\frac{\ell}{\mathrm{K}_{2} \mathrm{~A}} \Rightarrow \mathrm{~K}=\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}
$$

Q. 7 (3)

$\frac{1}{\mathrm{R}_{\mathrm{eq}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}} \Rightarrow \frac{\mathrm{~K}_{\mathrm{eq}} \times 2 \mathrm{~A}}{\ell}=\frac{\mathrm{KA}}{\ell}+\frac{2 \mathrm{KA}}{\ell}$
$\Rightarrow \mathrm{K}_{\mathrm{eq}}=\frac{3}{2} \mathrm{~K}$
Q. 8 (4)

Given $\mathrm{A}_{1}=\mathrm{A}_{2}$ and $\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{5}{4}$
$\because \mathrm{R}_{1}=\mathrm{R}_{2} \Rightarrow \frac{l_{1}}{\mathrm{~K}_{1} \mathrm{~A}}=\frac{l_{2}}{\mathrm{~K}_{2} \mathrm{~A}} \Rightarrow \frac{l_{1}}{l_{2}}=\frac{\mathrm{K}_{1}}{\mathrm{~K}_{2}}=\frac{5}{4}$
Q. 9 (2)

Because of uneven surfaces of mountains, most of it's parts remain under shadow. So, most of the mountains. Land is not heated up by sun rays. Besides this, sun rays fall slanting on the mountains and are spread over a larger area. So, the heat received by the mountains top per unit area is less and they are less heated compared to planes (Foot).
Q. 10 (4)

According to Kirchoff's law in spectroscopy. If a substance emit certain wavelengths at high temperature, it absorbs the same wavelength at comparatively lower temperature.
Q. 11 (2)

$$
\lambda_{\mathrm{m}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \lambda_{\mathrm{m}_{1}}=\frac{2000}{3000} \times \lambda_{\mathrm{m}_{1}}=\frac{2}{3} \lambda_{\mathrm{m}_{1}}=\frac{2}{3} \lambda_{\mathrm{m}}
$$

Q. 12 (1)

$$
\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{4} \Rightarrow \frac{\mathrm{E}}{\mathrm{E}_{2}}=\left(\frac{273+0}{273+273}\right)^{4} \Rightarrow \mathrm{E}_{2}=16 \mathrm{E}
$$

Q13 (1)

$$
\mathrm{E} \propto \mathrm{~T}^{4} \Rightarrow \frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\mathrm{T}^{4}}{\mathrm{~T}^{4}} \times 2^{4} \Rightarrow \mathrm{E}_{2}=\frac{\mathrm{E}}{16}
$$

Q. 14 (1)

From Stefan's law $\mathrm{E}=\sigma \mathrm{T}^{4}$

$$
\mathrm{T}^{4}=\frac{\mathrm{E}}{\sigma}=\frac{6.3 \times 10^{7}}{5.7 \times 10^{8}}=1.105 \times 10^{15}=0.1105 \times 10^{16}
$$

$$
\mathrm{T}=0.58 \times 10^{4} \mathrm{~K}=5.8 \times 10^{3} \mathrm{~K}
$$

Q. 15 (2)

According to Newton's law of cooling $\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\mathrm{K}\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$

In the first case,

$$
\begin{align*}
& \frac{(60-50)}{10}=K\left[\frac{60+50}{2}-\theta_{0}\right] \\
& 1=K(55-\theta) \tag{i}
\end{align*}
$$

In the second case,

$$
\begin{align*}
& \frac{(50-42)}{10}=K\left[\frac{50+42}{2}-\theta_{0}\right] \\
& 0.8=K\left(46-\theta_{0}\right) \tag{ii}
\end{align*}
$$

Dividing (i) by (ii), we get

$$
\frac{1}{0.8}=\frac{55-\theta_{0}}{46-\theta_{0}}
$$

or $46-\theta_{0}=44-0.8 \theta_{0} \Rightarrow \theta_{0}=10^{\circ} \mathrm{C}$
Q. 16 (1)

For small difference of temperature, it is the special case of Stefan's law.
Q. 17 (3)

In first case

$$
\begin{equation*}
\frac{60-40}{7}=K\left[\frac{60+40}{2}-10\right] \tag{i}
\end{equation*}
$$

In second case

$$
\begin{equation*}
\frac{40-28}{t}=K\left[\frac{40+28}{2}-10\right] \tag{ii}
\end{equation*}
$$

By solving $\mathrm{t}=7$ minutes

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1
(4)
$\mathrm{mc} \theta=\mathrm{m}_{\mathrm{i}} \mathrm{L} \Rightarrow \mathrm{m}_{\mathrm{i}}=\frac{\mathrm{mc} \theta}{\mathrm{L}}$
Q. 2 (4)

Heat is required to raise temperature of
(Calorimeter + Ice to vapour) ${ }_{\text {at } 0 \text { to } 100^{\circ} \mathrm{C}}$ $=(10 \times 100+\{10 \times 80+10 \times 1 \times 100+10 \times 540\})$ $=8200 \mathrm{Cal}$.
Q. 3 (1)

Required heat $/ \mathrm{sec}=0.1 \times 80 \mathrm{cal} / \mathrm{gm}=8 \mathrm{cal} / \mathrm{sec}$

Produced mass $=0.1 \times 100=10$ gm ice or water [now $\mathrm{Q}=$ $\mathrm{ms} \Delta \mathrm{T}]$
In unit time rise of temperature will be
$\Delta \mathrm{T}=\mathrm{Q} / \mathrm{ms}=8 /(10 \times 1)=0.8^{\circ} \mathrm{C} / \mathrm{s}$
$\mathrm{R}=0.1 \times 80=8 \mathrm{cal} / \mathrm{sec}$.
Q. 4 (1)

Using Energy conservation
The energy loss due to potential energy goes into increasing the temperature of ice.
$\frac{\mathrm{m}}{5}(\mathrm{~L})=\mathrm{mgh}$
$\Rightarrow \quad \mathrm{h}=\frac{\mathrm{L}}{5 \mathrm{~g}}$
Q. 5 (4)

From the data given
$\mathrm{S}_{\mathrm{A}} \rho_{\mathrm{A}}(8 \mathrm{~V})=(12 \mathrm{~V}) \rho_{\mathrm{B}} \mathrm{S}_{\mathrm{B}}$
$\frac{\mathrm{s}_{\mathrm{A}}}{\mathrm{s}_{\mathrm{B}}}=\frac{12 \rho_{\mathrm{B}}}{8 \rho_{\mathrm{A}}}=\frac{3}{2} \times \frac{2000}{1500}=2$
Q. 6 (1)

Let m is the mass
$\mathrm{mL}_{\mathrm{v}}+\mathrm{ms}_{\mathrm{w}}(100-80)=(1.1+0.02) \mathrm{s}_{\mathrm{w}}(80-15)$
$\mathrm{m}(540+20)=(1.12) 65 \Rightarrow \mathrm{~m}=0.130 \mathrm{~kg}$
Q. 7 (4)
$\therefore \mathrm{dQ}=\mathrm{msdT} \Rightarrow \frac{\mathrm{dT}}{\mathrm{dQ}}=\frac{1}{\mathrm{~ms}}$

Q. 8 (2)

$\mathrm{K}_{\mathrm{A}}=2 \mathrm{~K}_{\mathrm{B}}=2 \mathrm{~K}$
$\left(\frac{36-T}{d}\right) K_{A} A=\left(\frac{T-0}{d}\right) K_{B} A$
$(36-T) 2 K=T K$
$\mathrm{T}=\frac{72}{3}=24$
$\Delta \mathrm{T}=$ temp diff $=36-24=12$
Q. $9 \quad(\mathrm{a})(1),(\mathrm{b})(4)$
$i_{1}=\frac{(100-20)}{3 \times 10^{-2}}(209) 9 \times 10^{-4}$

$\mathrm{i}_{2}=\frac{100-20}{3 \times 10^{-2}}(385) 9 \times 10^{-4}$
$\mathrm{i}_{\mathrm{T}}=\mathrm{i}_{1}+\mathrm{i}_{2}=1.42 \times 10^{3} \mathrm{w}$
$\frac{\mathrm{i}_{\mathrm{Cu}}}{\mathrm{i}_{\mathrm{Al}}}=\frac{\mathrm{i}_{2}}{\mathrm{i}_{1}}=\frac{385}{209}$

Q. 10 (2)

It's a parallel Combination

$$
\mathrm{R}_{1}=\frac{\mathrm{d}}{\mathrm{~K}_{1} \mathrm{~A}} \quad \mathrm{R}_{2}=\frac{\mathrm{d}}{\mathrm{~K}_{2} \mathrm{~A}}
$$

$\frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+$ \qquad upto $\mathrm{n}^{\text {th }}$
$\frac{1}{R_{e q}}=\frac{n}{2 R_{1}}+\frac{n}{2 R_{2}}=\frac{n}{2}\left(\frac{R_{1}+R_{2}}{R_{1} R_{2}}\right)$
$R_{e q}=\frac{2\left(R_{1} R_{2}\right)}{n\left(R_{1}+R_{2}\right)} \Rightarrow \frac{d}{K_{e q}(n A)}=\frac{2\left(\frac{d}{K_{1} A}\right) \times \frac{d}{K_{2} A}}{n \frac{d}{A}\left(\frac{1}{K_{1}}+\frac{1}{K_{2}}\right)}$
$\Rightarrow \mathrm{K}_{\mathrm{eq}}=\frac{\mathrm{K}_{1}+\mathrm{K}_{2}}{2}$
Q. 11 (3)
$\mathrm{i}_{\mathrm{H}}=\frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{eq}}}=\frac{700-100}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
Where $R_{e q}=R_{1}+R_{2}=\frac{0.24}{0.9 \times 400}+\frac{0.02}{0.15 \times 400}$

$\mathrm{i}_{\mathrm{H}}=\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}=\frac{\Delta \mathrm{m} \cdot \mathrm{L}}{\Delta \mathrm{t}}$
$\frac{\Delta \mathrm{m}}{\Delta \mathrm{t}}=\frac{\mathrm{i}_{\mathrm{H}}}{\mathrm{L}}$ where $\mathrm{L}=540 \mathrm{cal} / \mathrm{gm} ; \Delta \mathrm{t}=3600 \mathrm{sec}$.
Q. 12 (2)

$\frac{\mathrm{Q}_{1}}{\mathrm{t}_{1}}=\mathrm{i}_{\mathrm{H}_{1}}=\frac{100-0}{2 \mathrm{R}}=\frac{50}{\mathrm{R}}$
$\mathrm{i}_{\mathrm{H}_{2}}=\frac{100}{\mathrm{R} / 2}=\frac{200}{\mathrm{R}}=\frac{\mathrm{Q}_{2}}{\mathrm{t}_{2}}$
$\mathrm{Q}_{1}=\mathrm{Q}_{2}=10 \mathrm{cal}$.
$\frac{50}{\mathrm{R}} \times(2)=\frac{200}{\mathrm{R}} \times \mathrm{t}_{2}$
$\mathrm{t}_{2}=\frac{1}{2} \mathrm{~min}$.
Q. 13 (1)

The heat current in the bottom of pot is due to temperature difference at the lower \& upper surface.
$i_{p}=K_{\text {steel }} A \cdot \frac{d T}{d x}=\frac{m}{t} . L_{v}$
$50.2 \times 0.15 \times \frac{(\mathrm{x}-100)}{1.2 \times 10^{-2}}=\frac{0.44}{5 \times 60} \times 2.25 \times 10^{6}$
[Let x be temperature of surface in contact with stove]

$$
x=105.25^{\circ} \mathrm{C}
$$

Q. 14 (3)

The heat current is equal to the heat required for fusion of ice per dt time.
$\mathrm{i}=\frac{\mathrm{dm}}{\mathrm{dt}} \cdot \mathrm{L}_{\mathrm{f}}=\mathrm{KA}\left(\frac{20-0}{2.35}\right)$
$\frac{\mathrm{dm}}{\mathrm{dt}}=2.4 \pi \times 10^{-6}$
Q. 15 (1)

We know that
$\mathrm{i}=\mathrm{K}\left(\pi \mathrm{R}^{2}\right) \frac{\mathrm{dT}}{\mathrm{dx}}, \mathrm{i} \propto \frac{\mathrm{R}^{2}}{\ell}$
Q. 16 (2)

We know that
$\mathrm{i}=-\mathrm{kAdT} / \mathrm{dx}$
And slope of the curve but $\mathrm{dT} / \mathrm{dx}=-\mathrm{i} / \mathrm{kA}$
i is constant (steady state), A is constant but since k is decreasing from 2 k to k , hence slope is -ve but less ve to more -ve.

Q. 17 (1)

From the given condition as the plates are in series so heat current is same.
$i_{1}=i_{2} \Rightarrow k_{1} A \frac{T_{B}-T_{A}}{d}=\frac{k_{2} A\left(T_{c}-T_{B}\right)}{2 d}$
$\frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=\frac{\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{B}}}{2\left(\mathrm{~T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{A}}\right)}=\frac{1}{2}\left(\frac{4 \mathrm{~T}_{\mathrm{A}}-2 \mathrm{~T}_{\mathrm{A}}}{2 \mathrm{~T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{A}}}\right)=1$

Q. 18 (4)

$\mathrm{i}=\mathrm{kA} \frac{\mathrm{dT}}{\mathrm{dx}} \Rightarrow \frac{\mathrm{dT}}{\mathrm{dx}} \propto \frac{1}{\mathrm{~K}}$
$\therefore \mathrm{i}$ and A are same for both the layers.
$\mathrm{i}=-\mathrm{kA}(\mathrm{dT} / \mathrm{dx})$
i and A are constant hence slope
$\mathrm{dT} / \mathrm{dx}=-\mathrm{i} /(\mathrm{kA})$ is -ve but
Slope $\propto(1 / k)$
Hence in air slope will be more - ve due to very less conductivity.
Q. 19 (2)

$\mathrm{i}_{\mathrm{BC}}=\mathrm{i}_{\mathrm{DB}} \Rightarrow \frac{\mathrm{kA}(90-20)}{\ell_{1}}=\frac{\mathrm{kA}(20-0)}{\ell_{2}}$ $\frac{\ell_{1}}{\ell_{2}}=\frac{7}{2}$

$\mathrm{T}_{\mathrm{C}}-20=\mathrm{T}_{\mathrm{B}}-\mathrm{T}_{\mathrm{C}}=\mathrm{T}_{\mathrm{A}}-\mathrm{T}_{\mathrm{B}}=\frac{200-20}{3}=60$
$\mathrm{T}_{\mathrm{C}}=80$
So $T_{B}=80+60=140^{\circ} \mathrm{C}$
Q. 21 (2)

The heat current is equal to required latent heat of fusion per unit time.
$\mathrm{i}=\frac{\mathrm{dm}_{\mathrm{ice}}}{\mathrm{dt}} \cdot \mathrm{L}_{\mathrm{f}}=\frac{\mathrm{kA}(100)}{\ell}$
$\mathrm{k}=\frac{\mathrm{dm}_{\text {ice }}}{\mathrm{dt}} \cdot \frac{\ell \mathrm{L}_{\mathrm{f}}}{\mathrm{A}(100)}=60 \mathrm{Wm}^{-1} \mathrm{k}^{-1}$

Q. 22 (3)

$\mathrm{i}=-\mathrm{kAdT} / \mathrm{dx}$
Slope $d T / d x=-i / k A$ is - ve but due to radiation loss because of not lagged, as we move ahead current i will be less. Hence slope wil be more - ve to less - ve.
$\mathrm{T}_{\mathrm{p}}=\frac{100+0}{2}=50^{\circ}$
As $T_{P}>T_{Q}$ so flow is from P to Q.
$\mathrm{T}_{\mathrm{Q}}=\frac{30+60}{2}=45^{\circ}$
Q. 24 (1)

Slope $\mathrm{dT} / \mathrm{dX}=-\mathrm{i} / \mathrm{kA}$ is less - ve for $1^{\text {st }}$ layer Hence $1^{\text {st }}$ layer should have larger k .
So $\mathrm{k}_{1}>\mathrm{k}_{2}$
Q. 25 (1)

Consider the two sections like two resistance $\mathrm{R}_{1} \& \mathrm{R}_{2}$.
$\mathrm{R}_{\mathrm{A}}=\frac{\ell_{1}}{\mathrm{k}_{1} \mathrm{~A}} \mathrm{R}_{\mathrm{B}}=\frac{2 \ell_{1}}{\frac{\mathrm{k}_{1}}{2} \mathrm{~A}}$
So $\theta=\left[\frac{\mathrm{R}_{\mathrm{B}}}{\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}}\right][100-0]$
$\theta=80^{\circ} \mathrm{C}$
Q. 26 (1)
B
A

Q. $27 \quad$ (3)

Initially $\mathrm{i}=\frac{\mathrm{dm}}{\mathrm{dt}} . \mathrm{L}_{\mathrm{f}}=\mathrm{k} \pi \mathrm{R}^{2} . \frac{100}{\ell}$
Hence $\frac{\mathrm{dm}}{\mathrm{dt}} \propto \frac{\mathrm{kR}^{2}}{\ell}$
From given condition
$\frac{\frac{\mathrm{dm}_{2}}{\mathrm{dt}^{\mathrm{dt}}}}{\frac{\mathrm{dm}}{\mathrm{dt}}}=\frac{\frac{\mathrm{k}}{4}\left(\frac{(2 \mathrm{R})^{2}}{\ell / 2}\right)}{\frac{\mathrm{kR}^{2}}{\ell}}$
$\frac{\frac{\mathrm{dm}_{2}}{\mathrm{dt}}}{0.1}=2 \Rightarrow \frac{\mathrm{dm}_{2}}{\mathrm{dt}}=0.2$
Q. 28 (1)

As the heat current through all the rods is same. So all the resistance are in series.
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$
$\frac{3 \ell}{\mathrm{k}_{\text {eq }} \mathrm{A}}=\frac{\ell}{\frac{\mathrm{k}}{2} \mathrm{~A}}+\frac{\ell}{5 \mathrm{kA}}+\frac{\ell}{\mathrm{kA}}$
$\frac{3}{\mathrm{k}_{\text {eq }} \mathrm{A}}=\frac{2}{\mathrm{k}}+\frac{1}{5 \mathrm{k}}+\frac{1}{\mathrm{k}}=\frac{16}{5 \mathrm{k}}$
$k_{\text {eq }}=\frac{15}{16} \mathrm{k}$
Q. 29 (1)

Req. is same for both the rods and same temperature same difference so $\mathrm{i}_{1}=\mathrm{i}_{2}$
Q. $30 \quad$ (4)

$R_{\text {eq }}=R_{1}+R_{2}+R_{3}$ where $R_{1}=\frac{\ell}{(2 k) A}, R_{2}=\frac{\ell}{k A}, R_{3}$
$\frac{\ell}{\left(\frac{\mathrm{k}}{2}\right) \mathrm{A}}$
$\frac{100-0}{R_{e q}}=\frac{100-\mathrm{T}_{1}}{\mathrm{R}_{1}}=\frac{100-\mathrm{T}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{\mathrm{T}_{2}-0}{\mathrm{R}_{3}}$
Q. 31 (1)
$\mathrm{P}_{\text {emite }}=\sigma \mathrm{eAT}^{4}$
since $\mathrm{T}_{1}=\mathrm{T}_{2}$
$\mathrm{P}_{\text {absorb }}=\sigma \mathrm{eAT}_{\mathrm{S}}^{4}$
Hollow Solid

So, $\mathrm{P}_{1}=\mathrm{P}_{2}$ at $\mathrm{t}=0$
cooling rate $\left(-\frac{\mathrm{dT}}{\mathrm{dt}}\right)=\frac{\sigma \mathrm{e} \mathrm{A}}{\mathrm{mS}}\left[\mathrm{T}^{4}-\mathrm{T}_{\mathrm{S}}^{4}\right]$
since $M_{H}<M_{S}$, so cooling rate will be different since cooling rate is not same so both will not have same temp at any instant $t($ except $t=0)$
Q. 32 (2)
$\left(-\frac{\mathrm{dT}}{\mathrm{dt}}\right)=\frac{\sigma \mathrm{eA}}{\mathrm{mS}}\left[\mathrm{T}^{4}-\mathrm{T}_{\mathrm{s}}^{4}\right]$
Rate of temperature fall will be maximum when ($\mathrm{T}^{4}-$ $\mathrm{T}_{\mathrm{S}}{ }^{4}$) has mass value i.e. T has max. value
$\left(-\frac{\mathrm{dT}}{\mathrm{df}}\right)_{\max }=\frac{\sigma \mathrm{eA}}{\mathrm{mS}}\left[500^{4}-300^{4}\right]$ Put all values $\&$ get answer.
Q. 33 (3)

For small temperature difference, Stefan's law can written as

$$
\Delta \mathrm{u}=\mathrm{e} \sigma \mathrm{~A}\left[(\mathrm{~T}+\Delta \mathrm{T})^{4}-\mathrm{T}^{4}\right]
$$

or $\quad \Delta u=e \sigma \mathrm{AT}^{4}\left[\left[1+\frac{\Delta \mathrm{T}}{\mathrm{T}}\right]^{4}-1\right]$
or $\quad \Delta u=e \sigma \mathrm{AT}^{4} \times 4 \times \frac{\Delta T}{\mathrm{~T}}$
or $\quad \Delta u \propto \Delta T$
Hence Newton's law of cooling is a special case of stefan's law.
Q. 34 (4)

Power

$$
\begin{aligned}
& \mathrm{P}=\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{A} \sigma T^{4}=\mathrm{A} \sigma\left(\frac{\mathrm{~b}}{\lambda}\right)^{4} \\
& \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{4}=\left(\frac{\lambda_{0}}{3 / 4 \lambda_{0}}\right)^{4}=\frac{256}{81}
\end{aligned}
$$

Q. 35 (2)

Let $I=\frac{P^{\prime}}{4 \pi d^{2}} \quad$ or $I=\frac{e \sigma A T^{4}}{4 \pi d^{2}}$
and $\mathrm{IA}_{\mathrm{f}}=\mathrm{P}$ (Given)
Now $P_{n e w}=I_{\text {new }} A_{f}=\frac{e \sigma A(2 T)^{4}}{4 \pi(2 d)^{2}} . A_{f}$

$$
=\frac{16}{4}\left[\frac{e \sigma A T^{4}}{4 \pi d^{2}} \cdot A_{f}\right]=\frac{16}{4} P
$$

Q. 36

We know that

$$
\begin{aligned}
& \lambda_{\max } \propto \frac{1}{\mathrm{~T}} \\
& \frac{\lambda_{1 \max }}{\lambda_{2 \max }}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \\
& \Rightarrow \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}=\frac{3}{4}
\end{aligned}
$$

Q. 37 (3)

$$
\begin{aligned}
& -\frac{\mathrm{dT}_{\mathrm{p}}}{\mathrm{dt}}=x\left(-\frac{\mathrm{dT}_{\mathrm{Q}}}{\mathrm{dt}}\right) \\
& \Rightarrow \frac{\mathrm{eA}_{\mathrm{p}} \sigma\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)}{\mathrm{m}_{\mathrm{p}} \mathrm{~S}}=\frac{\mathrm{xe} \mathrm{\sigma} \mathrm{~A}_{\mathrm{Q}}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)}{\mathrm{m}_{\mathrm{Q}} \mathrm{~S}} \\
& \Rightarrow \mathrm{x}=\frac{\mathrm{A}_{\mathrm{p}} \mathrm{~m}_{\mathrm{Q}}}{\mathrm{~A}_{\mathrm{Q}} \mathrm{~m}_{\mathrm{p}}}=\left(\frac{\mathrm{r}}{3 \mathrm{r}}\right)^{2} \times\left(\frac{3 \mathrm{r}}{\mathrm{r}}\right)^{3} \\
& \Rightarrow x=3
\end{aligned}
$$

Q. 38 (2)

Initially the temperature of the substance increases and then phase change from ice to water occurs \& this process continues.
Q. 39 (4)

Area $=\int y d x=\int \frac{d E}{d \lambda} \times d \lambda=\int d E$
$\operatorname{Area}(1)=\mathrm{E}=\sigma \mathrm{T}^{4}=\sigma\left(\frac{\mathrm{b}}{\lambda}\right)^{4}$

$$
\begin{aligned}
& \frac{\text { Area }_{1}}{\text { Area }_{2}}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{4} \Rightarrow \frac{1}{9}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{4} \\
& \Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\sqrt{3}
\end{aligned}
$$

Q. 40 (2)

Using relation $\lambda_{\text {max }} \propto \frac{1}{\mathrm{~T}}$
$\frac{\mathrm{T}_{\mathrm{S}}}{\mathrm{T}_{\mathrm{NS}}}=\frac{\lambda_{\mathrm{NS}_{\text {max }}}}{\lambda_{\mathrm{S}_{\text {max }}}}=\frac{350}{510}=0.69$

Q. 41 (2)

Using formula
$\mathrm{P}=\sigma \mathrm{eAT}^{4}$
$\mathrm{P}_{\mathrm{P}}=\varepsilon_{\mathrm{P}} \sigma(1) \theta_{\mathrm{P}}{ }^{4}$ and $\mathrm{P}_{\mathrm{Q}}=\varepsilon_{\mathrm{Q}} \sigma \mathrm{A} \theta_{\mathrm{Q}}{ }^{4}$
Now $P_{P}=P_{Q}$

$$
\left(\frac{\varepsilon_{\mathrm{Q}}}{\varepsilon_{\mathrm{p}}}\right)^{1 / 4} \theta_{\mathrm{Q}}=\theta_{\mathrm{P}}
$$

Q. 42 (1)
$\mathrm{E}_{273}=\mathrm{eA}(273+273)^{4}$ $=\mathrm{E}$ (Given)
$\mathrm{E}_{0}=\mathrm{eA}(273+0)^{4}$
$E_{0}=\frac{E}{16}$
Q. 43 (2)
\because Rate of cooling, $\mathrm{y}=\left(\mathrm{T}-\mathrm{T}_{0}\right) \mathrm{k}$ (from Newton's law of cooling)
T_{0} : surrounding temperature
k: +ve constant
\Rightarrow graph is straight line with + ve slope
Q. 44 (4)
$\mathrm{i}=\mathrm{ms} \frac{\mathrm{d} \theta}{\mathrm{dt}}=\operatorname{msk}\left(50^{\circ}-20^{\circ}\right)=10 \mathrm{~W}$
and $\frac{35.1-34.9}{60}=\mathrm{k}(35-20)$
from (1) \& (2)
$\frac{0.2}{60}=\frac{10}{\operatorname{ms}(30)} \times 15$
$\mathrm{ms}=1500 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
Q. 45 (2)

If the body cools from θ_{1} to θ_{2} then using formula

$$
\begin{aligned}
& \frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\alpha\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right) \\
& \frac{60-50}{4}=\mathrm{k}\left(\frac{60+50}{2}-\theta_{0}\right)
\end{aligned}
$$

$\frac{5}{2}=\mathrm{k}\left(55-\theta_{0}\right)$
and $\frac{40-30}{8}=k\left(\frac{40+30}{2}-\theta_{0}\right)$
$\frac{5}{4}=k\left(35-\theta_{0}\right)$
from (1) \& (2)
$2=\frac{55-\theta_{0}}{35-\theta_{0}}$
$\theta_{0}=70-55=15^{\circ} \mathrm{C}$

Q. 46 (1)

If the body cools from θ_{1} to θ_{2} then using formula
$\frac{\theta_{1}-\theta_{2}}{\mathrm{t}}=\alpha\left(\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right)$
$\frac{75-65}{5}=\mathrm{k}\left(\frac{75+65}{2}-25\right)$
$2=K(70-25) \Rightarrow K=\frac{2}{45}$
Now $\frac{65-\mathrm{x}}{5}=\mathrm{k}\left(\frac{65+\mathrm{x}}{2}-25\right)$
$2(65-x)=5 k(65+x-50)$
$130-2 \mathrm{x}=5 \times \frac{2}{45}(15+\mathrm{x})$
$\mathrm{x}=57^{\circ} \mathrm{c}$
Q. 47 (3)
$\frac{40-36}{5}=k\left(\frac{40+36}{2}-16\right)$
$\frac{4}{5}=K(38-16)$
$\Rightarrow \mathrm{k}=\frac{2}{55}$
..(1)

$$
\begin{aligned}
& \frac{36-32}{t}=\frac{2}{55}\left(\frac{36+32}{2}-16\right) \\
& \frac{2 \times 55}{t}=(34-16) \\
& t=6.1 \mathrm{~min}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

Water flow rate $=20 \mathrm{gm} / \mathrm{sec}$
for 1 sec
$\mathrm{Q}=\mathrm{P} \times \mathrm{t}=2100 \times 1=2100 \mathrm{~J}$
$\mathrm{Q}=2100=20 \times 4.2(\mathrm{t}-10)$
$\mathrm{t}=35^{\circ} \mathrm{C}$
Q. 2 (B)

For 1 sec we can say that
$\mathrm{P}_{\mathrm{c}} \times 80 \%=(\mathrm{\rho v}) \mathrm{s}(\mathrm{t}-10)$
$2 \times 10^{3} \times \frac{80}{100}=(1000) \cdot 100 \times\left(10^{-2}\right)^{3} \cdot 4200(t-10)$.
On solving
$\mathrm{t}=13.8^{\circ} \mathrm{C}$
Q. 3 (A)
$\left(\mathrm{m}_{\mathrm{w}}+\mathrm{w}_{\mathrm{f}}\right)(1)(70-40)=\mathrm{m}_{\text {ice }} \mathrm{L}_{\mathrm{f}}+\mathrm{m}_{\text {ice }}(1)(40-0)$
$\left(200+\mathrm{w}_{\mathrm{f}}\right)(70-40)=500 \mathrm{~L}_{\mathrm{f}}+50 \times 40$..(1)
$\left(\mathrm{m}_{\mathrm{w}}+\mathrm{w}_{\mathrm{f}}+\mathrm{m}_{\text {ice }}\right)(40-10)=\mathrm{m}_{\text {ice }} \mathrm{L}_{\mathrm{f}}+\mathrm{m}_{\text {ice }}^{\prime}(1)(10-0)$
$(200+\mathrm{w}+50) 30=80 \mathrm{~L}_{\mathrm{f}}+80 \times 10 \quad$..(2)
fromeq. (1) \& (2)
$50 \times 30=30 \mathrm{~L}_{\mathrm{f}}-30 \times 40$
$\mathrm{L}_{\mathrm{f}}=90 \mathrm{cal} / \mathrm{gm}=3.78 \times 10^{5} \mathrm{~J} / \mathrm{kg}$
Q. 4 (B)

At a temperature T
$\mathrm{dQ}=\mathrm{SdT}=\mathrm{aT}^{3} \mathrm{dT}$
$\mathrm{Q}=\mathrm{a} \int_{1}^{2} \mathrm{~T}^{3} \mathrm{dT}=\frac{\mathrm{a}\left[\mathrm{T}^{4}\right]_{1}^{2}}{4}=\frac{15 \mathrm{a}}{4}$
Q. 5 (C)

For vapourization the total time required is $=(30-20) \mathrm{min}=10 \mathrm{~min}$
Total Heat Given $=42 \mathrm{KtJ} \times 10=420 \mathrm{KJ}$ so $\mathrm{mL}=420 \mathrm{~kJ}$
$5 \mathrm{~L}=420 \Rightarrow \mathrm{~L}=84 \mathrm{KJ} / \mathrm{kg}$
Q. 6 (C)

Ice Changes to water hence volume decreases but mass remains same hence
$\mathrm{V}_{\mathrm{w}} \mathrm{P}_{\mathrm{w}}=\mathrm{V}_{\mathrm{ice}} \mathrm{P}_{\text {ice }}$
$\mathrm{V}_{\mathrm{w}}=\frac{\mathrm{V}_{\text {ice }} \mathrm{P}_{\text {ice }}}{\mathrm{P}_{\mathrm{w}}}$
Let volume ($\mathrm{V}_{\text {ice }}$) change to water
$\left(0.9 \rho_{\mathrm{w}} \mathrm{V}_{\mathrm{ice}}\right) \mathrm{L}=\mathrm{H}$
...(1)
$\Delta v=v_{\text {ice }}-v_{w}=\left(v_{\text {ice }}-\frac{v_{\text {ice }} \rho_{\text {ice }}}{\rho_{w}}\right)$
$=\mathrm{v}_{\text {ice }}(1-0.9)=0.1 \mathrm{v}_{\text {ice }}=1 \mathrm{~cm}^{3}$
$\mathrm{v}_{\text {ice }}=10 \mathrm{~cm}^{3}$
So from eq. (1)
$[0.9 \times 1 \times 10] \times 80=H$
$\mathrm{H}=720 \mathrm{cal}$.
Q. $7 \quad$ (C)

$$
\begin{aligned}
& i_{H}=\frac{0-(-\theta)}{(y / K A)}=\frac{\theta K A}{y}=\frac{d Q}{d t} \\
& \frac{d Q}{d t}=L \frac{d m}{d t}=L \frac{\rho \cdot A d y}{d t}
\end{aligned}
$$

$$
\frac{K A \theta}{y}=\rho A L \frac{d y}{d t}
$$

$$
\int_{2}^{4} y d y=\int_{0}^{3600}\left(\frac{K \theta}{\rho L}\right) d t
$$

$$
\left(\frac{\mathrm{y}^{2}}{2}\right)_{2}^{4}=\frac{\mathrm{K} \theta}{\rho \mathrm{~L}}(\mathrm{t})_{0}^{3600}
$$

Where $\mathrm{K}=4 \times 10^{-3}$
$\rho=0.9 \mathrm{gm} / \mathrm{cc}$
$\mathrm{L}=80 \mathrm{cal} / \mathrm{gm}$
Q. 8 (C)
$\theta_{1}-\theta_{2}=\Delta \theta \frac{\theta_{1}-\theta}{\int_{R_{1}}^{R} \frac{d r}{K 4 \pi r^{2}}}=\frac{\theta_{1}-\theta_{2}}{\int_{R_{1}} \frac{d r}{K 4 r^{2}}}$

$$
\begin{aligned}
& \frac{\Delta \theta / 2}{\frac{1}{4 \pi \mathrm{~K}_{1}}\left[\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}}\right]}=\frac{\Delta \theta}{\frac{1}{4 \pi \mathrm{~K}_{1}}\left(\frac{1}{\mathrm{R}_{1}}-\frac{1}{\mathrm{R}_{2}}\right)} \\
& \Rightarrow \mathrm{R}=\frac{2 \mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
\end{aligned}
$$

Q. 9 (A)

Initially
$H=\frac{k A\left(T_{2}-T_{1}\right)}{(2 \pi-\theta) R}+\frac{k A\left(T_{2}-T_{1}\right)}{\theta R}$.
finally $2 H=\frac{k A\left(T_{2}-T_{1}\right)}{(2 \pi-\theta) R}+\frac{k^{\prime} A\left(T_{2}-T_{1}\right)}{\theta R}$.
from (1) \& (2) $\mathrm{k}^{\prime}=\frac{4 \mathrm{k}}{3}+\mathrm{k}=\frac{7 \mathrm{k}}{3}$
Q. 10 (C)

$$
\int \mathrm{dR}=\int_{r_{1}}^{r_{2}} \frac{\mathrm{dr}}{\mathrm{k}\left(4 \pi \mathrm{r}^{2}\right)}
$$

$\mathrm{R}_{\mathrm{eq}}=\frac{1}{4 \pi \mathrm{k}}\left[\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right]$
Now $R_{1}\left(\right.$ when $\left.r_{1}=R, r_{2}=2 R\right)=\frac{1}{8 \pi k R}$
and $R_{2}\left(\right.$ when $\left.r_{1}=2 R, r_{2}=3 R\right)=\frac{1}{4 \pi k R}\left[\frac{1}{2}-\frac{1}{3}\right]$
$=\frac{1}{24 \pi \mathrm{kR}}$

$T=\frac{R_{1}}{R_{1}+R_{2}} \times 100=75^{\circ} \mathrm{C}$

Q. 11 (A)

Taking an element at a distance x of length dx and having at temperature difference dT .

$$
\begin{aligned}
& \mathrm{i}=\frac{\alpha}{T} \mathrm{~A} \frac{\mathrm{dT}}{\mathrm{dx}}=\mathrm{C} \text { (const.) } \\
& \Rightarrow \alpha \mathrm{A}[\ell \mathrm{nT}]_{T_{1}}^{T}=C x
\end{aligned}
$$

$\alpha \ln \left(\frac{T}{T_{1}}\right)=\left(\frac{C}{A}\right) x$
at $\mathrm{x}=\mathrm{L}, \mathrm{T}=\mathrm{T}_{2} \Rightarrow \frac{\mathrm{C}}{\mathrm{A}}=\frac{\alpha}{\mathrm{L}} \ln \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
So $\mathrm{T}=\mathrm{T}_{1}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)^{x / \mathrm{L}}$
Q. 12 (C)

$36=\left(\frac{\mathrm{T}-100}{8}\right) \mathrm{kA}+\left(\frac{\mathrm{T}-4}{8}\right) \mathrm{kA}$
$\mathrm{K}=0.5 \mathrm{cal} /{ }^{\circ} \mathrm{c} / \mathrm{cm}$
$\mathrm{A}=12 \mathrm{~cm}^{2}$.
Q. 13 (D)

(A)
$R_{e q}=2 R_{g}+R_{\text {air }}=\frac{2(3 \mathrm{~mm})}{\mathrm{k}_{\mathrm{g}} \mathrm{A}}+\frac{(3 \mathrm{~mm})}{\mathrm{k}_{\text {air }} \mathrm{A}}$

$$
\mathrm{R}=\frac{6 \mathrm{~mm}}{\mathrm{k}_{\mathrm{g}} \cdot \mathrm{~A}}
$$

(B)

$$
\frac{\mathrm{i}_{\mathrm{A}}}{\mathrm{i}_{\mathrm{B}}}=\frac{\frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{eq}}}}{\frac{\Delta \mathrm{~T}}{\mathrm{R}}}=\frac{\mathrm{R}}{\mathrm{R}_{\mathrm{eq}}}=\frac{\frac{6 \mathrm{~mm}}{\mathrm{~K}_{\mathrm{g}} \cdot \mathrm{~A}}}{\frac{2(3 \mathrm{~mm})}{\mathrm{K}_{\mathrm{g}} \mathrm{~A}}+\left(\frac{3 \mathrm{~mm}}{\mathrm{~K}_{\text {air }} \mathrm{A}}\right)}=\frac{\frac{1}{\mathrm{~K}_{\mathrm{g}}}}{\frac{2 \mathrm{~K}_{\text {air }}+\mathrm{K}_{g}}{2 \mathrm{~K}_{\mathrm{g}} \cdot \mathrm{~K}_{\text {air }}}}
$$

$$
=\frac{2 \mathrm{~K}_{\text {air }}}{\mathrm{K}_{\mathrm{g}}+2 \mathrm{~K}_{\text {air }}}
$$

Q. 14 (B)

Let at time t radius be r
Then $\frac{d Q}{d t}=C A=4 C \pi r^{2}=-\frac{d m}{d t} . L_{f}$
$\mathrm{m}=\rho_{\text {ice }} \frac{4}{3} \pi \mathrm{r}^{3} \Rightarrow \mathrm{dm}=\mathrm{C}_{0} \mathrm{r}^{2} \mathrm{dr}$
So. $(4 \mathrm{C} \pi) \mathrm{r}^{2}=-\mathrm{L}_{\mathrm{f}} \mathrm{C}_{0} \mathrm{r}^{2} \frac{\mathrm{dr}}{\mathrm{dt}} \Rightarrow \frac{\mathrm{dr}}{\mathrm{dt}}=$ const
Q. 15 (B)
$\mathrm{H}=\sigma \mathrm{e} \mathrm{AT}^{4}$
$\mathrm{H} \alpha \mathrm{A} \alpha \mathrm{r}^{2}$
$\mathrm{C}=\frac{\sigma e \mathrm{~A}}{\mathrm{~ms}}\left(4 \mathrm{~T}_{\mathrm{s}}^{3} \Delta \mathrm{~T}\right) \quad \mathrm{C} \alpha \frac{\mathrm{A}}{\mathrm{m}} \alpha \frac{\mathrm{r}^{2}}{\mathrm{r}^{3}} \alpha \mathrm{r}$

Q. 16 (D)

$e_{A}: e_{B}: e_{C}=1: \frac{1}{2}: \frac{1}{4}$
Rate of emission : $\frac{d Q}{d t} \quad=\mathrm{eA} \mathrm{\sigma T} \mathrm{~T}^{4}$ is same

So, eT^{4} is same $\quad \Rightarrow \mathrm{T}_{\mathrm{A}}^{4}: \mathrm{T}_{\mathrm{B}}^{4}: \mathrm{T}_{\mathrm{C}}^{4}=\frac{1}{\mathrm{e}_{\mathrm{A}}}: \frac{1}{\mathrm{e}_{\mathrm{B}}}:$
$\frac{1}{\mathrm{e}_{\mathrm{C}}} \quad=1: 2: 4$
as $\lambda \mathrm{T}=\mathrm{b}=$ constant
So, $\lambda_{\mathrm{A}}^{4}: \lambda_{\mathrm{B}}^{4}: \lambda_{\mathrm{C}}^{4}=\frac{1}{\mathrm{~T}_{\mathrm{A}}^{4}}: \frac{1}{\mathrm{~T}_{\mathrm{B}}^{4}}: \frac{1}{\mathrm{~T}_{\mathrm{C}}^{4}}$
$=1: \frac{1}{2}: \frac{1}{4}$
On solving $\sqrt{\mathrm{e}_{A} \lambda_{A} T_{A} \times \mathrm{e}_{B} \lambda_{B} \mathrm{~T}_{B}=\mathrm{e}_{C} \lambda_{C} \mathrm{~T}_{C}}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. 1 (D)

Loss(copper) $=$ gain (water + beaker $)$
$\mathrm{m}_{\mathrm{CH}} \mathrm{s}_{\mathrm{CH}}\left(\mathrm{T}_{\mathrm{CH}}-\mathrm{T}\right)=\mathrm{m}_{\mathrm{w}} \mathrm{s}_{\mathrm{w}}\left(\mathrm{T}-\mathrm{T}_{\mathrm{w}}\right)+\mathrm{m}_{\mathrm{b}} \mathrm{s}_{\mathrm{b}}\left(\mathrm{T}-\mathrm{T}_{\mathrm{w}}\right)$
Hence final temperature can be calculated.
Q. 2
(D)

Rate of melting is doubled if Rate of heat flow is doubled
and Rate $\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{KA}(\mathrm{T}-0)}{\ell}$
in (D) T is doubled $\left(50\right.$ to $\left.100^{\circ} \mathrm{C}\right)$
and area and length are also doubled hence $\frac{d Q}{d t}$ doubles.
Q. 3 (A, B ,C)

Heat required to melt ice
Heat given by the water $=\mathrm{m} \times 10 \times 1=10 \mathrm{~m}$
Heat required to melt ice $>$ Heat given by water so complete ice will not melt.
Q. $4(\mathrm{~A}, \mathrm{~B})$
$\mathrm{P}_{1}=\mathrm{P}_{2}$
$\mathrm{T}_{\mathrm{A}} \lambda_{\mathrm{A}}=\mathrm{T}_{\mathrm{B}} \lambda_{\mathrm{B}}$
$\sigma \mathrm{e}_{\mathrm{A}} \mathrm{AT}_{\mathrm{A}}{ }^{4}=\sigma \mathrm{e}_{\mathrm{B}} \mathrm{AT}_{\mathrm{B}}{ }^{4}$
$\mathrm{T}_{\mathrm{A}} \lambda=\mathrm{T}_{\mathrm{B}}(\lambda+1)$
$\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\left(\frac{0.81}{0.01}\right)^{1 / 4}=3$
$\lambda=\frac{1}{2} \mu \mathrm{~m}$
$\mathrm{T}_{\mathrm{B}}=\frac{\mathrm{T}_{\mathrm{A}}}{3}=\frac{5802}{3}=1934 \mathrm{~K}$
$\lambda_{\mathrm{B}}=\lambda+1=1.5 \mu \mathrm{~m}$
Q. 5 (B,C)

Let the diameter of the sun be D and its distance from the earth be R .

$$
\frac{D}{R}=\theta
$$

The radiation emitted by the surface of the sun per unit time is

$$
4 \pi\left(\frac{\mathrm{D}}{2}\right)^{2} \sigma \mathrm{~T}^{4}=\pi \mathrm{D}^{2} \sigma \mathrm{~T}^{4} .
$$

At distance R, this radiation falls on an area $4 \pi R^{2}$ in unit time. The radiation received at the earth's surface per unit time per unit area is, therefore.

$$
\mathrm{s}=\frac{\pi \mathrm{D}^{2} \sigma \mathrm{~T}^{4}}{4 \pi \mathrm{R}^{2}}=\frac{\sigma T^{4}}{4}\left(\frac{\mathrm{D}}{\mathrm{R}}\right)^{2} .
$$

Thus, $\mathrm{s} \propto \mathrm{T}^{4}$ and $\mathrm{s} \propto \theta^{2}$

Q. 6 (A,C)

$\mathrm{T} \lambda=$ Constant

$$
v_{\mathrm{m}}=\frac{\mathrm{C}}{\lambda_{\max }}
$$

$\frac{\mathrm{T}}{v_{\text {max }}}=$ Constant
$\frac{T_{1}}{v_{1}}=\frac{T_{2}}{v_{2}} v_{2}=\frac{T_{2}}{T_{1}} \cdot v_{1}=\frac{2 T}{T} . v_{1}=2 v_{1}$
$\mathrm{E}=\sigma \mathrm{e} \mathrm{AT}^{4}$
$E \alpha T^{4} \frac{E_{2}}{E_{1}}=(2)^{4}=16$
Q. 7 (C,D)

Not Reflected and Not Refracted.
Q. 8 (A,B,C)

Good Absorbers are good emitters.
Q. 9 (A,B,D)
$\frac{d Q}{d t}=e A \sigma T^{4}$
So, $\frac{\mathrm{dQ}}{\mathrm{dt}} \propto \mathrm{A}$
$\propto \mathrm{e}$ (nature of surface)
$\propto \mathrm{T}$ (temprature)
But independent of mass.
Q. 10 (A,B)
(A) $\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{eA} \mathrm{\sigma T} \mathrm{~T}^{4}$
(Rate of emission is same initially)
(B) $\frac{\mathrm{dQ}_{\mathrm{a}}}{\mathrm{dt}}=\mathrm{eA} \mathrm{\sigma T} \mathrm{~T}_{0}{ }^{4}$
(Rate of obsorption is same always)
(C) $\frac{-\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{eA} \mathrm{\sigma}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)}{\mathrm{ms}}$
(Due to lesser mass of hollow sphere it cools fast.) (wrong)
(D) Since hollow sphere cools fast ;
hollow will have smaller temperature at any moment.(wrong)
Q. 11 (A,B,C,D)
$\left(-\frac{d T}{d t}\right)=\frac{e A \sigma}{m c}\left(T^{4}-T_{0}^{4}\right)$
Q. 12 (C,D)
(A) Heat absorption is surface phenomenon hence wooden (Black surface) absorbs more.(wrong)
(B) After long time both will have temperature of surroundings.(wrong)
(C) Because metal is better conductor it feels hotter.
(D) Because emission depend on surface (i.e. more for black surface)
Q. 13 (AC)
$\mathrm{m}_{\mathrm{A}}=4 \mathrm{~m}_{\mathrm{B}}, \rho \times \frac{4}{3} \pi \mathrm{r}_{\mathrm{A}}{ }^{3}=\rho \times \frac{4}{3} \pi \mathrm{r}_{\mathrm{B}}{ }^{3} \times 4 \Rightarrow \frac{\mathrm{r}_{\mathrm{A}}}{\mathrm{r}_{\mathrm{B}}}=4^{1 / 3}$
$=2^{2 / 3}$
Rate of heat loss $=\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{eA} \mathrm{\sigma}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}{ }^{4}\right)$

Ratio $\frac{(d Q / d t)_{A}}{(d Q / d t)_{B}}=\frac{A_{A}}{A_{B}}=\left(\frac{r_{A}}{r_{B}}\right)^{2}=2^{4 / 3}$
Rate of cooling $\frac{-\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{dQ} / \mathrm{dt}}{\mathrm{ms}}$
Ratio $\frac{(-d T / d t)_{A}}{(-d T / d t)_{B}}=\frac{(d Q / d t)_{A}}{(d Q / d t)_{B}} \times \frac{m_{B}}{m_{A}}=2^{4 / 3} \times \frac{1}{4}$ $=2^{-2 / 3}$

Q. 14 (B)

In steady state $\left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer } 1}=\left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer } 4}$
$\Rightarrow \frac{0.06 \times \mathrm{A} \times(30-25)}{1.5 \times 10^{-2}}=\frac{0.10 \times \mathrm{A} \times \Delta \mathrm{T}}{3.5 \times 10^{-2}}$
$\Rightarrow \Delta \mathrm{T}=7^{\circ} \mathrm{C}$
$\mathrm{T}_{3}=(-10+7)^{\circ} \mathrm{C}=-3^{\circ} \mathrm{C}$

Q. 15 (A)

$\left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer 1 }}=\left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer3 }}$
$\Rightarrow \frac{0.06 \times \mathrm{A} \times 5}{1.5 \times 10^{-2}}=\frac{0.04 \times \mathrm{A} \times \Delta \mathrm{T}}{2.8 \times 10^{-2}} \Rightarrow \Delta \mathrm{~T}=14^{\circ} \mathrm{C}$
$\mathrm{T}_{3}=(-3+14)^{\circ} \mathrm{C}=11^{\circ} \mathrm{C}$
Q. 16 (A)

$$
\begin{aligned}
& \left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer 1 }}=\left.\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}\right|_{\text {layer 2 }} \\
& \Rightarrow \frac{0.06 \times \mathrm{A} \times 5}{1.5 \times 10^{-2}}=\frac{\mathrm{K}_{2} \times \mathrm{A} \times 14}{1.4 \times 10^{-2}} \Rightarrow \mathrm{~K}_{2}=0.02 \mathrm{~W} / \mathrm{mK}
\end{aligned}
$$

Q. 17 (B)

We have $\theta-\theta_{\mathrm{s}}=\left(\theta_{0}-\theta_{\mathrm{s}}\right) \mathrm{e}^{-\mathrm{kt}}$
where $\theta_{0}=$ Initial temperature of body $=40^{\circ} \mathrm{C}$
$\theta=$ temperature of body after time t.
Since body cools from 40 to 38 in 10 min , we have

$$
38-30=(40-30) \mathrm{e}^{-\mathrm{k} 10} \ldots . .(1)
$$

Let after 10 min , The body temp. be θ

$$
\theta-30=(38-30) \mathrm{e}^{-\mathrm{k} 10} \ldots .(2)
$$

$\frac{(1)}{(2)}$ gives $\frac{8}{\theta-30}=\frac{10}{8}, \theta-30=6.4 \Rightarrow \theta=36.4{ }^{\circ} \mathrm{C}$
Q. 18 (A)

Temperature decreases exponentially.

Q. 19 (C)

During heating process from 38 to 40 in 10 min . The body will lose heat in the surrounding which will be exactly equal to the heat lost when it is cooled from 40 to 38 in 10 min , which is equal to $\mathrm{ms} \Delta \theta=2 \times 2=4 \mathrm{~J}$.
During heating process heat required by the body $=\mathrm{m}$ $\mathrm{s} \Delta \theta=4 \mathrm{~J}$.
\therefore Total heat required $=8 \mathrm{~J}$.
Q. 20 (A,B)
(A) Emitted energy is very less for longer and shorter wavelength.
(B) From fig. at λ_{m} intensity is maximum
(C) Area under the curve shows amount of energy emitted.
Q. 21 (A,B,C,D)

When $\mathrm{T} \uparrow$ curve shifts towards shorter wavelength hence curve spreads i.e. Area increases.
Q. 22 (B)
$\lambda_{\mathrm{m}} \propto \frac{1}{\mathrm{~T}}, \quad \mathrm{~T}^{\prime}>\mathrm{T}$ So, option B is correct.
Q. 23 (A)

Thermal resistance is given as
$\mathrm{R}_{\mathrm{A}}=\frac{\ell}{3 \mathrm{kA}} \quad \mathrm{R}_{\mathrm{B}}=\frac{\ell}{\mathrm{kA}}$
$\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{B}}}=\frac{1}{3}$
Q. 24 (B)

As the rods are in series so that current is same.
$\mathrm{i}=\frac{3 \mathrm{k}_{\mathrm{A}} \mathrm{T}_{\mathrm{A}}}{\ell}=\frac{\mathrm{kAT}_{\mathrm{B}}}{\ell}$
$\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{1}{3}$
Q. 25 (B)

For temperature gradient comparing $\frac{d T}{d x}$ for $A \& B$.
$\mathrm{i}_{\mathrm{A}}=\mathrm{i}_{\mathrm{B}} \Rightarrow 3 \mathrm{kA}\left(\frac{\mathrm{dT}}{\mathrm{dx}}\right)_{\mathrm{A}}=k A\left(\frac{\mathrm{dT}}{\mathrm{dx}}\right)_{B}$
$3 \mathrm{kAG}_{\mathrm{A}}=\mathrm{kAG}_{\mathrm{B}}$
$\frac{\mathrm{G}_{\mathrm{A}}}{\mathrm{G}_{\mathrm{B}}}=\frac{1}{3}$
.26 (A)
In 40 min . temperature of water has come down by $40^{\circ} \mathrm{C}$. Therefore rate
$\mathrm{P}=\frac{\mathrm{mS} \Delta \mathrm{T}}{\mathrm{t}}=\frac{0.60 \times 4200 \times 40}{40 \times 60}=42.0 \mathrm{~W}$

Q. 27 (C)

Sample of ice has been receiving heat at constant rate P from water. Its temperature has increased by $30^{\circ} \mathrm{C}$ in time 60 min .

Therefore $\frac{m_{i} s_{i} \Delta T_{i}}{P}=60 \mathrm{~min}$.
$\Rightarrow \mathrm{m}=\frac{(60 \times 60 \mathrm{~s}) \times(42 \mathrm{~W})}{(2100 \mathrm{~J} / \mathrm{kg}) \cdot\left(30^{\circ} \mathrm{C}\right)}=2.4 \mathrm{~kg}$

Q. 28 (B)

Thermal equilibrium reaches after 60 min . Ice conversion takes place for 20 min . During this time water at $0^{\circ} \mathrm{C}$ continues to give heat at rate P.
$\mathrm{m} \times \mathrm{L}_{\mathrm{f}}=\mathrm{P} \times(20 \times 60 \mathrm{~s}) \Rightarrow \mathrm{m}=\frac{42 \times 20 \times 60}{3.3 \times 10^{5}} \mathrm{~kg}$
$=0.15 \mathrm{~kg}$
Q. 29 (D)
Q. 30 (B)
Q. 31 (A)

$$
\text { (Q. } 29 \text { to } 31 \text {) }
$$

As steam has comparatively large amount of heat to provide in the form of latent heat we check what amount of heat is required by the water and ice to go up to $100^{\circ} \mathrm{C}$, that is $\left(\mathrm{m}_{\mathrm{i}} \mathrm{L}+\mathrm{m}_{\mathrm{i}} \mathrm{S}_{\mathrm{w}} \Delta \mathrm{T}\right)+\mathrm{m}_{\mathrm{w}} \cdot \mathrm{S}_{\mathrm{w}} \cdot \Delta \mathrm{T}$
$=[(200 \times 80)+(200 \times 1 \times 100)]+(200 \times 1 \times 45)$
$=45,000 \mathrm{cal}$.
That is given by mass of steam, then
$m_{s} . L=45,000$
$\mathrm{m}_{\mathrm{s}}=\frac{45,000}{540}=\frac{500}{6}=83.3 \mathrm{gm}$
therefore 83.3 gm steam converts into water of $100^{\circ} \mathrm{C}$.
Total water $=200+200+83.3=483.3 \mathrm{gm}$ steam left $=16.7 \mathrm{gm}$.
Q. 32 (A) p, s, (B) t (C) q, r (D) t
(A) Initially more heat will enter through section A due to temperature difference and no heat will flow
through section B because initially there is no temperature difference.
(B) At steady state rate of heat flow $\left(\frac{d Q}{d t}\right)$ is same for all sections
(C) At steady state $\frac{d Q}{d t}=k A\left|\frac{d T}{d x}\right|$ or $\left|\frac{d T}{d x}\right|$
$=\frac{1}{k A}\left(\frac{d Q}{d t}\right)$
$\left|\frac{d T}{d x}\right|$ is inversely proportional to area of cross-section.
Hence is maximum at B and minimum at A
(D) At steady state heat accumulation $=0$

So $\frac{d T}{d t}=0$ for any section.
Q. 33 (A) p,q, (B) r, (C) s, (D) r
(A) For a perfectly black body, both absorption and emission of radiation occurs.
(B) For a perfectly polished body cent percent reflection occurs.
(C) When radiation is incident from rarer to denser medium, both reflection and refraction occurs.
(D) When radiation is incident from denser to rarer medium, reflection always occurs but refraction may or may not occur.

NUMERICAL VALUE BASED

Q. 1 [4]
$\mathrm{Q}_{\text {loss }}=\mathrm{Q}_{\text {gain }}$
$\mathrm{m}_{\mathrm{C}} \mathrm{S}_{\mathrm{C}} \Delta \mathrm{T}_{\mathrm{C}}=\mathrm{m}_{\text {ice }} \mathrm{L}$
$\left(\rho_{\mathrm{C}} \mathrm{A} \ell\right)\left(\mathrm{S}_{\mathrm{C}}\right)(\mathrm{T}-0)=\left(\rho_{\text {ice }} \mathrm{Ah}\right) \mathrm{L}$
$\mathrm{h}=\frac{\rho_{C} \ell S_{C} T}{\rho_{\text {ice }} L}$
$\frac{h_{A}}{h_{B}}=\frac{\rho_{A} S_{A}}{\rho_{B} S_{B}}=\frac{(4)(0.2)}{(2)(0.1)}=4$

Q. 2 [5]

$200 \times \mathrm{S} \times 30+50 \times \mathrm{S} \times 40=250 \times \mathrm{S} \times \mathrm{T}_{1}$

$\mathrm{T}_{1}=32^{\circ}$
$32 \times \mathrm{S} \times 50+150 \times \mathrm{S} \times 40=200 \times \mathrm{S} \times \mathrm{T}_{2}$
$\mathrm{T}_{2}=38^{\circ}$
$200 \times \mathrm{S} \times 32+50 \times \mathrm{S} \times 38=250 \times \mathrm{S} \times \mathrm{T}_{3}$
$\mathrm{T}_{3}=33.2^{\circ}$
$33.2 \times \mathrm{S} \times 50+150 \times \mathrm{S} \times 38=200 \times \mathrm{S} \times \mathrm{T}_{4}$
$\mathrm{T}_{4}=36.8^{\circ}$
$36.8 \times \mathrm{S} \times 50+200 \times \mathrm{S} \times 33.2=250 \times \mathrm{S} \times \mathrm{T}_{5}$ $\mathrm{T}_{5}=33.92^{\circ}$
Q. 3 [1716]

$\frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{k}_{1} \mathrm{~A}_{1}}{\mathrm{~L}} \Delta \mathrm{~T}+\frac{\mathrm{k}_{2} \mathrm{~A}_{2}}{\mathrm{~L}} \Delta \mathrm{~T}=\frac{80 \times 1 \times 78}{0.5}+$
$\frac{14 \times\left(\pi \times\left(\frac{1}{\sqrt{2}}\right)^{2}-1^{2}\right) \times 78}{0.5}$
$=156\left[80+\frac{7(\pi-2)}{2}\right]=156\left[80+7\left(\frac{22-14}{7}\right)\right]$
$=156 \times 88 \times \frac{\mathrm{dm}}{\mathrm{dt}} \times \mathrm{L}_{\mathrm{f}}=\frac{\mathrm{dm}}{\mathrm{dt}} \times 80 \times 4200$
$\Delta \mathrm{m}=\frac{156 \times 88 \times 7 \times 60}{80 \times 4200}=11 \times 156 \times 10^{-3} \mathrm{~kg}$
$=1716 \mathrm{gm}$
Q. 4 [0516]
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\sigma \times 0.8 \times 4 \pi \mathrm{r}_{1}{ }^{2}\left[800^{4}-600^{4}\right]$

$=\mathrm{k} \times \frac{4 \pi \mathrm{r}_{2} \mathrm{r}_{2}^{\prime}}{\mathrm{r}_{2}^{\prime}-\mathrm{r}_{2}} \times(600-\mathrm{T})$
$r_{2} r_{2}{ }^{\prime} \approx r_{2}{ }^{2}$
600-T
$=\frac{\frac{17}{3} \times 10^{-8} \times \frac{0.9}{10} \times \frac{1}{100} \times 10^{8} \times 100 \times 28 \times 10^{3} \times \frac{5}{100}}{0.085}$
$\Rightarrow \mathrm{T}=516 \mathrm{~K}$

Q. 5

[340]
The rate of the heat transfer is approximately proportional to the temperature difference, between radiator and room as well as between the room and the outside. The corresponding proportionality constants can be denoted as C ("radiator-room") and D("roomoutside").
Then, initially,
$\mathrm{C}(\mathrm{T}-300)=\mathrm{D}(300-260)$
For the second set of temperatures:
$\mathrm{C}(\mathrm{T}-290)=\mathrm{D}(290-240)$
Solving the equations yields $\mathrm{T}=340 \mathrm{~K}$

Q. 6 [2606]

The process would be

1 kg water at $80^{\circ} \mathrm{C} \xrightarrow{\Delta \mathrm{H}_{1}} 1 \mathrm{~kg}$ water at $100^{\circ} \mathrm{C}$

1 kg vapour at $100^{\circ} \mathrm{C}$ and 2 atm pressure

$$
\begin{aligned}
& \Delta \mathrm{H}_{1}=\mathrm{ms} \Delta \theta=1 \times 4.2 \times 10^{3} \times 20 \\
& \quad=8.4 \times 10^{4} \mathrm{~J} \\
& \Delta \mathrm{H}_{2}=\mathrm{mL}_{\mathrm{v}}+\mathrm{P} \Delta \mathrm{~V} \\
& =1 \times 580 \times 10^{3} \times 4.2+2 \times 10^{5} \times 850.14 \times 10^{-3} \\
& =26.06 \times 10^{5} \mathrm{~J}=2606 \mathrm{~kJ}
\end{aligned}
$$

Q. 7 [0041]

Neglecting other heat losses
Heat lost by water $=$ Heat gained by thermometer
$\therefore \mathrm{m}_{1} \mathrm{~s}_{1}\left(\theta_{1}-40^{\circ}\right)=\mathrm{m}_{2} \mathrm{~s}_{2}\left(40^{\circ}-10^{\circ}\right)$
$\mathrm{m}_{1}=$ mass of water
$\mathrm{m}_{2}=$ mass of thermometer
$\mathrm{s}_{1}=$ specific heat of water
$\mathrm{s}_{2}=$ specific heat of thermometer
$\Rightarrow \theta_{1}=40.6^{\circ} \mathrm{C}$
$\approx 41^{\circ} \mathrm{C}$
Q. 8 [8]
$-\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\mathrm{K}}{100 \times \mathrm{S}_{\mathrm{w}}}\left(\mathrm{T}-\mathrm{T}_{0}\right)$
$\int_{40}^{35} \frac{-d T}{T-T_{0}}=\int_{0}^{5} \frac{K}{100 \times S_{w}} d t$
$\int_{40}^{35} \frac{-\mathrm{dT}}{\left(\mathrm{T}-\mathrm{T}_{0}\right)}=\int_{0}^{2} \frac{\mathrm{dt}}{100 \times \rho_{\ell} \mathrm{s}_{\ell}}$
$\frac{5 \mathrm{~K}^{`}}{100 \mathrm{~S}_{\mathrm{w}}}=\frac{2 \mathrm{~K}}{100 \times \rho_{\ell} \mathrm{S}_{\ell}}$
$\rho_{\ell}=\frac{4}{5} \mathrm{~g} / \mathrm{cm}^{3}=\frac{4 \times 10^{-3} \mathrm{~kg}}{5 \times 10^{-6} \mathrm{~m}^{3}}=\frac{4}{5} \times 10^{3}$
$=\frac{40}{5} \times 10^{2}=800 \mathrm{~kg} / \mathrm{m}^{3}$
Q. 9 [8]

When Cu rod is used
$\frac{100}{\mathrm{R}_{\mathrm{Cu}}} \times 20=\mathrm{m} \times \mathrm{L}$
when stell rod is used
$\frac{100}{\mathrm{R}_{\text {stell }}} \times 60=\mathrm{mL} \ldots .$. (2)
when both are in series
$\mathrm{R}_{\text {eq }}=\mathrm{R}_{\mathrm{Cu}} \times \mathrm{R}_{\text {stell }}$
$\frac{100}{R_{\mathrm{Cu}} \times \mathrm{R}_{\text {stell }}} \times \mathrm{t}=\mathrm{mL}$
from (1) \& (2)
$\mathrm{R}_{\mathrm{Cu}}=\frac{2000}{\mathrm{~mL}}$
$\mathrm{R}_{\text {stell }}=\frac{6000}{\mathrm{~mL}}$
$\frac{100 \times \mathrm{mL} \times \mathrm{t}}{8000}=\mathrm{mL}$
$\mathrm{t}=80$ minutes
Q. 10 [9]
$\mathrm{Q}=\mathrm{ms} \Delta \mathrm{T}+\mathrm{mL}$
$=450 \mathrm{cal}$
$450 \times 4=9000 \mathrm{~J}$

KVPY

PREVIOUS YEAR'S

Q. 1 (A)

All the three object will be in thermal equilibrium then $\% \mathrm{~T}_{1}=\mathrm{T}_{2}=\mathrm{T}_{3}$
Q. 2 (A)
$\mathrm{P}=\sigma \mathrm{AT}^{4}$
$=\sigma \times 4 \pi \mathrm{R}^{2} \times \mathrm{T}^{4}$
$\mathrm{P}^{\prime}=\sigma \times 4 \pi(2 \mathrm{R})^{2} \times\left(\frac{\mathrm{T}}{2}\right)^{4}$
$\mathrm{P}^{\prime}=\sigma \times 4 \pi \mathrm{R}^{2} \mathrm{~T}^{4} \times 4 \times \frac{1}{16}$
$P^{\prime}=\frac{P}{4}$
Q. 3 (D)
$\frac{100-\mathrm{T}}{\mathrm{R}_{1}}=\frac{\mathrm{T}-0}{\mathrm{R}_{2}}$
$\frac{100-\mathrm{T}}{\mathrm{T}}=\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}$
$\mathrm{R}=\frac{\mathrm{L}}{\mathrm{KA}}$
$\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}=\frac{\mathrm{k}_{2}}{\mathrm{k}_{1}}$
$\frac{100-\mathrm{T}}{\mathrm{T}}=\frac{50}{385}=\frac{10}{77}$
$7700-77 \mathrm{~T}=10 \mathrm{~T}$
$7700=87 \mathrm{~T}$
$\mathrm{T}=\frac{7700}{87}=88^{\circ} \mathrm{C}$

Q. 4 (D)

Heat loss by water $=$ heat gain by ice.
$100 \times 1 \times 80=\mathrm{m} \times 80$
$\mathrm{m}=100 \mathrm{gm}$ ice melt
\therefore Remaining ice $=50 \mathrm{~g}$
(B)

Ice has low thermal conductivity
So no exchange of heat outside surrounding.
Q. 6 (B)

Energy radiated, $\mathrm{U} \propto \mathrm{AT}^{4} \mathrm{t}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}=\frac{\mathrm{A} / 2(2 \mathrm{~T})^{4} \cdot \mathrm{t}}{\mathrm{AT}^{4} \cdot \mathrm{t}}=8 \\
& \Rightarrow \mathrm{U}_{2}=8 \mathrm{U}_{1} \\
& \Rightarrow \mathrm{mS} \Delta \mathrm{t}_{2}=8 \mathrm{mS} \Delta \mathrm{t}_{1} \\
& \Rightarrow \Delta \mathrm{t}_{2}=8 \Delta \mathrm{t}_{1}
\end{aligned}
$$

Q. 7 (A)

$\frac{50 \times \mathrm{A} \times(100-\mathrm{T})}{0.1}=\frac{400 \times \mathrm{A} \times(\mathrm{T}-0)}{0.2}$
Q. 8 (C)

\because Heat capacity increase with temperature
Q. 9 (A)
$\mathrm{Pt}=\mathrm{m}_{\mathrm{w}} \mathrm{S}_{\mathrm{w}} \Delta \mathrm{T}+\mathrm{m}_{\mathrm{c}} \mathrm{S}_{\mathrm{c}} \Delta \mathrm{T}$
$10 \times 15 \times 60=0.5 \times 4200 \times 3+\mathrm{m}_{\mathrm{c}_{\mathrm{c}}} \times 3$
$9000=6300+\mathrm{m}_{\mathrm{c}} \mathrm{s}_{\mathrm{c}} 3$
$\mathrm{m}_{\mathrm{c}_{\mathrm{c}}}=900 \mathrm{~J} / \mathrm{k}$.
Now, for oil
$10 \times 20 \times 60=2 \times \mathrm{S}_{0} \times 2+900 \times 2$
$12000-1800=4 \mathrm{~S}_{0}$
$\mathrm{S}_{0}=\frac{10200}{4}=2.51 \times 10^{3} \mathrm{~J} / \mathrm{kg}-\mathrm{k}$
Q. 10 (D)
$3 \frac{\mathrm{kA}}{\ell}[100-\mathrm{T}]=\frac{\mathrm{kA}}{\ell}[\mathrm{T}-0]$
$3 \mathrm{w}-3 \mathrm{~T}=\mathrm{T}$
$\mathrm{T}=75^{\circ} \mathrm{C}$
Q. 11 (A)

E Radiated by Sun
$\mathrm{E}=4 \pi \mathrm{r}^{2} \times 1.4 \mathrm{~kW}=\mathrm{mC}^{2}$
$\mathrm{E}=4 \pi \times\left(1.5510^{11}\right) \times 1.4 \times 10^{3}=\mathrm{m} .\left(3 \times 10^{8}\right)^{2}$
$\mathrm{m}=\frac{4 \times 22 \times(1.5)^{2} \times 1.4 \times 10^{9}}{7 \times 9}=10^{9} \mathrm{~kg} / \mathrm{s}$
Q. 12 (C)

Specific heat of water is very high
\therefore It temperature rises by small amount.
Q. 13 (D)

Surface area of Ice get increases by crushing and colling due to ice occur due to convection process which is proportional to area.
Q. 14 (C)

Calorimetry principle
Heat lost = Heat gain
Heat loss by aluminum $=$ Heat gain by water
$50 \times 10^{-3} \times 900 \times(300-160)=1 \times 4200 \times(\mathrm{T}-30)$
$\Rightarrow 6300=4200$ ($\mathrm{T}-30$)
$\Rightarrow 1.5=\mathrm{T}-30$
$\Rightarrow \mathrm{T}=31.5^{\circ} \mathrm{C}$
Q. 15 (A)

Total heat gain $=20 \times 2.09+334.4 \mathrm{KJ}=376.2 \mathrm{~kJ}$
Total heat loss $=752.4 \mathrm{~kJ}$
Heat gain required $=752.4-376.2=376.2 \mathrm{~kJ}$
$376.2=\mathrm{ms} \Delta \mathrm{T}$
$376.2=3 \times 4.18 \times \Delta \mathrm{T}$
$\Delta \mathrm{T}=30$ centigrate
$\mathrm{T}_{\text {final }}=30^{\circ} \mathrm{C}$

Q. 16 (A)

Because on earth there is no atmosphere. So water will boil. (At Boiling point vapour pressure $=$ Atmospheric pressure, in open vessel)
Q. 17 (C)
$\mathrm{MB}=20 \times 10^{-3} \mathrm{Kg}$
$\mathrm{CB}=5000 \mathrm{~J} / \mathrm{Kg}{ }^{\circ} \mathrm{C}$
$\mathrm{V}=2000 \mathrm{M} / \mathrm{s}$
$\mathrm{M}_{\mathrm{w}}=1 \mathrm{Kg}$
$\mathrm{C}_{\mathrm{w}}=3000 \mathrm{~J} / \mathrm{Kg}-{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}}=25^{\circ} \mathrm{C}=298 \mathrm{~K}$
$\frac{1}{2} M V^{2}=M_{w} C_{w} \Delta T_{w}+M_{B} C_{B} \Delta T_{B}$
$=\frac{1}{2} \mathrm{M}_{\mathrm{B}} \mathrm{V}^{2}=\mathrm{M}_{\mathrm{w}} \mathrm{C}_{\mathrm{w}}\left(\Delta \mathrm{T}_{\mathrm{w}}\right)+\mathrm{M}_{\mathrm{B}} \mathrm{C}_{\mathrm{B}} \Delta \mathrm{T}_{\mathrm{B}}$
$=\frac{1}{2} \times 20 \times 10^{-3} \times 4 \times 10^{6}$
$=(\Delta \mathrm{T})\left\{1 \times 3000+20 \times 10^{-3} \times 5000\right\}$
$\Rightarrow 40 \times 10^{3}=\Delta \mathrm{T}\{3000+100\}$
$\Delta \mathrm{T}=\frac{40 \times 10^{3}}{3100}$
$\Delta \mathrm{T}=12.9$
$\mathrm{T}_{\mathrm{f}}-25=12.9$
$\mathrm{T}_{\mathrm{f}}=25+12.9=37.9^{\circ} \mathrm{C}$
Q. 18 (B)

$$
\frac{\mathrm{dm}}{\mathrm{dt}} \times \mathrm{S} \Delta \mathrm{~T}=\frac{\mathrm{d} \theta}{\mathrm{dt}}
$$

$\frac{\mathrm{d} \theta}{\mathrm{dt}}=5 \times 10^{8} \times$ volume of rod
$=5 \times 10^{8} \times \pi \times(4)^{2} \times 10^{-6} \times \frac{0.2}{10}$
$=5 \times 10 \times \pi \times 16 \times 2$
$=1600 \pi$
$0.2 \times 4 \times 10^{3} \Delta T=1600 \pi$
$8 \times 10^{2} \Delta \mathrm{~T}=16 \times 10^{2} \pi$
$\Delta \mathrm{T}=3.14 \times 2$
$\Rightarrow 6.28^{\circ} \mathrm{C}$
Q. 19 (B)

$\mathrm{t} \propto \frac{\mathrm{m}}{\mathrm{A}}$
$\mathrm{t}=\mathrm{k} \cdot \frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{A}}=\mathrm{k} . \mathrm{ph}$
$t \propto h$
$\therefore \frac{\mathrm{t}_{\mathrm{A}}}{\mathrm{t}_{\mathrm{B}}}=\frac{\mathrm{h}_{\mathrm{A}}}{\mathrm{h}_{\mathrm{B}}}=\frac{\mathrm{h}_{0}}{2 \mathrm{~h}_{0}} \Rightarrow \mathrm{t}_{\mathrm{B}}=2 \mathrm{t}_{\mathrm{A}}$
Q. 20 (B)
$\mathrm{ds}=\mathrm{ds}_{1}+\mathrm{ds}_{2}$
$d s=\frac{-Q}{T_{1}}+\frac{Q}{T_{2}}$
$\mathrm{ds}=-\mathrm{Q}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\frac{\mathrm{ds}}{\mathrm{dt}}=-\frac{\mathrm{Q}}{\mathrm{dt}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\frac{-\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{R}}\left[\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\frac{\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right)}{\mathrm{R}}\left[\frac{\mathrm{T}_{1}-\mathrm{T}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right]$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\left(\frac{\mathrm{T}_{1}^{2}+\mathrm{T}_{2}^{2}-2 \mathrm{~T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}\right) \frac{1}{\mathrm{R}}$
$\frac{\mathrm{ds}}{\mathrm{dt}}=\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}+\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}-2\right) \frac{1}{\mathrm{R}}$
$y=\left(x+\frac{1}{x}-2\right) \frac{1}{R}$

Q. 21 (C)

Vaporization rate of water $=20 \mathrm{~g} / \mathrm{h}$
Water vaporized in 2 hour $=20 \times 2 \mathrm{gm}$
$\mathrm{dm}=\frac{40}{1000} \mathrm{~kg}$
$\frac{\text { Latent heat of vaparisation }}{\text { specificheat of water }}=540=\frac{\mathrm{L}}{\mathrm{C}}$
heat contain in vaporised vapor $=(\mathrm{dm}) . \mathrm{L}=(\mathrm{dm}) . \mathrm{L}$
Heat lost by water in earthen pitcher $=m c . d T$
$\mathrm{m}=4 \mathrm{~kg}$
heat loss by water in earthen pitcher $=$ heat contain in vaporised water $\mathrm{dm} . \mathrm{L}=\mathrm{m} . \mathrm{C} . \mathrm{dT}$
$\frac{40}{1000}\left(\frac{L}{C}\right)=4 . d T$
$\mathrm{dT}=\frac{1}{100} \times 540=5.4^{\circ} \mathrm{C}$
$\mathrm{dT}=5.4^{\circ} \mathrm{C}$
Q. 22 (A)
$100^{\circ} \mathrm{L}=200^{\circ} \mathrm{C}$
$1^{\circ} \mathrm{L}=2^{\circ} \mathrm{L}$
$0^{\circ} \mathrm{C}=25^{\circ} \mathrm{L}$
$100^{\circ} \mathrm{C}=75^{\circ} \mathrm{L}$,
Q. 23 (B)
$50 \mathrm{t}_{0}(540)+50$ to $(100-70)=500(1)(70-25)$
$28500 \mathrm{t}_{0}=22500$
$\mathrm{t}_{0}=0.789 \mathrm{~min}=47 \mathrm{sec}$
Q. 24 (D)

The minimum observed intensity of the parent star is $0.9999 \mathrm{I}_{0}$
Q. 25 (D)
$\mathrm{P}_{\text {body }}=\sigma\left(4 \pi\left(50 \mathrm{R}_{\mathrm{s}}\right)^{2}\right)\left(2 \mathrm{~T}_{\mathrm{s}}\right)^{4}$
$\Rightarrow P_{\text {body }}=P_{\text {sun }} \times(50)^{2} \times(2)^{4}$
Intensity at earth due to body
$=\frac{\mathrm{P}_{\text {body }}}{4 \pi \mathrm{R}_{\text {body }}^{2}}=\frac{(50)^{2} \times 2^{4} \times \mathrm{P}_{\text {sun }}}{4 \times 10^{20} \times(4 \pi \mathrm{AU})^{2}}$
$\Rightarrow \mathrm{I}_{\text {body }}=10^{-16} \times \mathrm{I}_{\text {sun }}$
Q. 26 (B)
$\mathrm{P}=\mathrm{ms} \frac{\mathrm{dT}}{\mathrm{dt}}$
$\Rightarrow \int_{0}^{1} \mathrm{Pdt}=\int_{\mathrm{T}_{0}}^{\mathrm{T}} \operatorname{msdT}$

$$
=\mathrm{Pt}=\mathrm{ms}\left(\mathrm{~T}-\mathrm{T}_{0}\right)
$$

$\Rightarrow \mathrm{T}=\frac{\mathrm{P}}{\mathrm{ms}} \mathrm{t}+\mathrm{T}_{0}$
where T_{0} is temperature at $\mathrm{t}=\mathrm{t}_{0}$

Q. 27 (C)

Rate of heat absorbed $=$ Rate of heat emitted $\sigma \mathrm{AT}^{4}+\sigma \mathrm{A}(2 \mathrm{~T})^{4}=\sigma 2 \mathrm{atM}^{4}$

$$
\mathrm{T}_{\mathrm{m}}=\left(\frac{17}{2}\right)=1.7 \mathrm{~T}
$$

Q. 28 (A)

$$
\begin{aligned}
& \frac{\Delta \ell}{\ell}=\alpha \Delta \theta=\frac{\mathrm{F}}{\mathrm{yA}} \\
& \Delta \theta=\frac{\mathrm{F}}{\mathrm{yA} \mathrm{\alpha}}=5^{\circ} \mathrm{C} \\
& \Delta \theta=20-\mathrm{T}=5 \\
& \mathrm{~T}=15^{\circ} \mathrm{C}
\end{aligned}
$$

Q. 29 (B)

$$
\begin{aligned}
& \frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{eA} \sigma\left[\mathrm{~T}_{0}^{4}-\mathrm{T}_{\mathrm{s}}^{4}\right] \\
& \mathrm{e}=1, \mathrm{~A}=7 \times 10^{-2}, \mathrm{~s}=5.67 \times 10^{-8} \\
& \mathrm{~T}_{0}=333 \mathrm{~K}, \mathrm{~T}_{\mathrm{s}}=273 \mathrm{~K}
\end{aligned}
$$

$\frac{\mathrm{dQ}}{\mathrm{dt}}=26.75 \mathrm{Watt}$
total energy produced $=\frac{10}{100} \times 30 \times 10^{3} \times 300$
$\Rightarrow 9 \times 10^{5} \mathrm{~J}$
$\therefore \quad$ time $=\frac{9 \times 10^{5}}{26.75 \times 3600} \mathrm{hrs}=9.35 \mathrm{hrs}$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (4)

Sol. $\frac{\theta_{2}-\theta}{\mathrm{R}_{2}}=\frac{\theta-\theta_{1}}{\mathrm{R}_{1}}$

$$
\begin{aligned}
& \theta_{2}-\theta R_{1}=\theta R_{2}-\theta_{1} R_{2} \\
& \theta\left[R_{1}+R_{2}\right]=\theta_{1} R_{2}+\theta_{2} R_{1} \\
& \theta=\frac{\theta_{1} R_{2}+\theta_{2} R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

Q. 2 (1)

$\mathrm{R}_{\text {eff }}=\frac{l}{\mathrm{~K}_{1} \mathrm{~A}}+\frac{l}{\mathrm{~K}_{2} \mathrm{~A}}=\frac{2 l}{\mathrm{~K}_{\mathrm{eq}} \mathrm{A}}$
$\mathrm{K}_{\mathrm{eq}}=\frac{2 \mathrm{~K}_{1} \mathrm{~K}_{2}}{\mathrm{~K}_{1}+\mathrm{K}_{2}}$
Q. 3 (3)
Q. 4 (2)
Q. 5

Thermal resistance of spherical sheet of thickness dr and radius r is
$\mathrm{dR}=\frac{\mathrm{dr}}{\mathrm{K}\left(4 \pi \mathrm{r}^{2}\right)}$
$\mathrm{R}=\int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \frac{\mathrm{dr}}{\mathrm{K}\left(4 \pi \mathrm{r}^{2}\right)}$
$\mathrm{R}=\frac{1}{4 \pi \mathrm{~K}}\left(\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right)=\frac{1}{4 \pi \mathrm{~K}}\left(\frac{\mathrm{r}_{2}-\mathrm{r}_{1}}{\mathrm{r}_{1} \mathrm{r}_{2}}\right)$

Thermal current (i) $=\frac{\theta_{2}-\theta_{1}}{R}$
$\mathrm{i}=\frac{4 \pi \mathrm{Kr}_{1} \mathrm{r}_{2}}{\mathrm{r}_{2}-\mathrm{r}_{1}}\left(\theta_{2}-\theta_{1}\right)$
[2]

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (A,C,D)

A: At steady state, heat flow through A and E are same.
C: $\Delta T=i \times R$
' i ' is same for A and E but R is smallest for E.
$\mathrm{D}: \mathrm{i}_{\mathrm{B}}=\frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{B}}}$
$\mathrm{i}_{\mathrm{C}}=\frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{C}}}$
$i_{D}=\frac{\Delta T}{R_{D}}$
if $i_{c}=i_{B}+i_{D}$
Hence $\frac{1}{R_{C}}=\frac{1}{R_{B}}+\frac{1}{R_{D}}$
$\Rightarrow \frac{8 \mathrm{KA}}{\ell}=\frac{3 \mathrm{KA}}{\ell}+\frac{5 \mathrm{KA}}{\ell}$
Q. 2 (C)

In steady state energy absorbed by middle plate is equal to energy

released by middle plate.

$$
\begin{gathered}
\sigma \mathrm{A}(3 \mathrm{~T})^{4}-\sigma \mathrm{A}\left(\mathrm{~T}^{\prime}\right)^{4}=\sigma \mathrm{A}\left(\mathrm{~T}^{\prime}\right)^{4}-\sigma \mathrm{A}(2 \mathrm{~T})^{4} \\
(3 \mathrm{~T})^{4}-\left(\mathrm{T}^{\prime}\right)^{4}=\left(\mathrm{T}^{\prime}\right)^{4}-(2 \mathrm{~T})^{4} \\
\left(2 \mathrm{~T}^{\prime}\right)^{4}=(16+81) \mathrm{T}^{4} \\
\mathrm{~T}^{\prime}=\left(\frac{97}{2}\right)^{1 / 4} \mathrm{~T}
\end{gathered}
$$

Q. 3 (A)

In configuration 1 equivalent thermal resistance is $\frac{3 R}{2}$
In configuration 2 equivalent thermal resistance is
$\frac{\mathrm{R}}{3}$
Thermal Resistance \propto time taken by heat flow from high temperature to low temperature
Q. 4 (A)

In steady state
$\mathrm{I} \pi \mathrm{R}^{2}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right) 4 \pi \mathrm{R}^{2} \Rightarrow \mathrm{I}=\sigma\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right) 4$
$\Rightarrow \mathrm{T}^{4}-\mathrm{T}_{0}^{4}=40 \times 10^{8} \quad \Rightarrow \quad \mathrm{~T}^{4}-81 \times 10^{8}=40$
$\times 10^{8}$
$\Rightarrow \mathrm{T}^{4}=121 \times 10^{8} \quad \Rightarrow \mathrm{~T} \approx 330 \mathrm{~K}$
Q. 5
(B)
$P_{\text {device }}-P_{\text {cooler }}=\frac{m s \Delta T}{\Delta t}$
$3000-P=\frac{120 \times 4.2 \times 10^{3} \times 20^{0}}{3 \times 60 \times 60}$
$\Rightarrow P=2067 W$
Hence, (B)
Q. 6 (C,D)

As $\lambda_{m} T=$ constant
$\& P=\frac{V^{2}}{R}$
Hence, (c, d)
Q. 7 [9]
$1=\log _{2}\left\{\frac{e A \sigma(487+273)^{4}}{P_{0}}\right\}$
$\& x=\log _{2}\left\{\frac{e A \sigma(2767+273)^{4}}{P_{0}}\right\}$
$\therefore x=9$
Q. 8 (A)
$\frac{T_{Q}-10}{\frac{R}{2}}=\frac{400-T_{Q}}{R} \Rightarrow T_{Q}=140$
$\frac{d l}{d x}=\alpha \Delta T$
$\int_{0}^{\Delta l} d l=\int_{0}^{1} \alpha(130 x) d x \quad \Rightarrow \Delta l=0.78 m m$
Hence, (A)
(B)
(A) Since the temperature of the body remains same, therefore heat rdiated by the body is same as before.
$\left(\mathrm{W}_{1}=\sigma a \mathrm{~T}^{4}=\sigma \mathrm{a}(310)^{4}\right)$
(B) $\mathrm{W} \propto$ Area

If exposed area deacreases, energy radiated also decreases.
(C) $\lambda_{\mathrm{m}} \mathrm{T}=\mathrm{b}$
$\Rightarrow \quad \mathrm{T} \uparrow$,
$\lambda_{\mathrm{m}} \downarrow$
(D) $\left(\mathrm{W}_{1}=\sigma a \mathrm{~T}^{4}=\sigma \mathrm{a}(310)^{4}\right)$
$\sigma \mathrm{T}_{0}^{4}=460 \mathrm{Wm}^{-2}$
$\sigma \mathrm{a}(310)^{4}>460 \mathrm{Wm}^{-2}$
Q. 10 [4.00]

We have in steady state,

$$
\left(\frac{200-300}{\frac{\mathrm{~L}}{\mathrm{k}_{1} \pi \mathrm{r}^{2}}}\right)+\left(\frac{200-100}{\frac{\mathrm{~L}}{\mathrm{k}_{2} \pi(2 \mathrm{r})^{2}}}\right)=0
$$

$\Rightarrow \frac{\mathrm{k}_{1} \pi \mathrm{r}^{2} \times 100}{\mathrm{~L}}=\frac{100 \mathrm{k}_{2} \pi \times 4 \mathrm{r}^{2}}{\mathrm{~L}} \Rightarrow \frac{\mathrm{k}_{1}}{\mathrm{k}_{2}}=4$
Q. 11 (A)
$\mathrm{P}=\frac{\mathrm{dQ}}{\mathrm{dt}} \quad \mathrm{T}_{(\mathrm{t})}=\mathrm{T}_{0}\left(1+\beta \mathrm{t}^{1 / 4}\right)$
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\mathrm{ms} \frac{\mathrm{dT}}{\mathrm{dt}} \Rightarrow \mathrm{S}=\overline{\frac{\mathrm{P}}{\left(\frac{\mathrm{dT}}{\mathrm{dt}}\right)}}$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\mathrm{T}_{0}\left[0+\beta \frac{1}{4} \cdot \mathrm{t}^{-3 / 4}\right]=\frac{\beta \mathrm{T}_{0}}{4} \cdot \mathrm{t}^{-3 / 4}$
$S=\frac{P}{(d T / d t)}=\frac{4 P}{\beta T_{0}} \cdot t^{3 / 4}$
$\mathrm{S}=\frac{4 \mathrm{P}}{\beta}\left[\frac{\mathrm{t}^{3 / 4}}{\mathrm{~T}_{0}}\right]$
$\frac{\mathrm{T}(\mathrm{t})}{\mathrm{T}_{0}}=\left(1+\beta \mathrm{t}^{1 / 4}\right)$
$\beta \mathrm{t}^{1 / 4}=\frac{\mathrm{T}(\mathrm{t})}{\mathrm{T}_{0}}-1=\frac{\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}}{\mathrm{~T}_{0}}$

$$
\begin{aligned}
& \mathrm{t}^{3 / 4}=\left(\frac{\mathrm{T}(\mathrm{t})-\mathrm{T}_{0}}{\beta \cdot \mathrm{~T}_{0}}\right)^{3} \\
& \Rightarrow \mathrm{~S}=\frac{4 \mathrm{P}}{\mathrm{~T}_{0} \beta}\left[\frac{\mathrm{~T}(\mathrm{t})-\mathrm{T}_{0}}{\beta \cdot \mathrm{~T}_{0}}\right]^{3}=\frac{4 \mathrm{P}}{\beta^{4} \mathrm{~T}_{0}^{4}}\left[\mathrm{~T}(\mathrm{t})-\mathrm{T}_{0}\right]^{3}
\end{aligned}
$$

Q. 12 [270.00]

Let $\mathrm{m}=$ mass of calorimeter,
$x=$ specific heat of calorimeter
$\mathrm{s}=$ specifc heat of liquid
$\mathrm{L}=$ latent heat of liquid
First 5 g of liquid at 30° is poured to calorimter at $110^{\circ} \mathrm{C}$
$\therefore \mathrm{m} \times \mathrm{x} \times(110-80)=5 \times \mathrm{s} \times(80 \times 30)+5 \mathrm{~L}$
$\Rightarrow \mathrm{mx} \times 30=250 \mathrm{~s}+5 \mathrm{~L}$
Now, 80 g of liquid at 30° is poured into calorimeter at $80^{\circ} \mathrm{C}$, the equilibrium temperature reaches to $50^{\circ} \mathrm{C}$.
$\therefore \mathrm{m} \times \mathrm{x} \times(80-30)=80 \times \mathrm{s} \times(50-30)$
$\Rightarrow \mathrm{mx} \times 30=1600 \mathrm{~s}$
From (i) \& (ii)
$250 \mathrm{~s}+5 \mathrm{~L}=1600 \mathrm{~s} \Rightarrow 5 \mathrm{~L}=1350 \mathrm{~s}$
$\Rightarrow \frac{\mathrm{L}}{\mathrm{s}}=270$
Q. 13 (B, C, D)
$A=64 \mathrm{~mm}^{2}, T=2500 \mathrm{~K}$ (A=surface area of filament, $\mathrm{T}=$ temperature of filament, d is distance of bulb from observer, $\mathrm{R}_{\mathrm{e}}=$ radius of pupil of eye)
Point source $\mathrm{d}=100 \mathrm{~m}$
$\mathrm{R}_{\mathrm{e}}=3 \mathrm{~mm}$
(A) $\mathrm{P}=\sigma \mathrm{AeT}^{4}$
$=5.67 \times 10^{-8} \times 64 \times 10^{-6} \times 1 \times(2500)^{4}(e=1$ black body $)$
$=141.75 \mathrm{w}$
Option (A) is wrong
(B) Power reaching to the eye
$=\frac{\mathrm{P}}{4 \pi \mathrm{~d}^{2}} \times\left(\pi \mathrm{R}_{\mathrm{e}}^{2}\right)$
$=\frac{141.75}{4 \pi \times(100)^{2}} \times \pi \times\left(3 \times 10^{-3}\right)^{2}$
$=3.189375 \times 10^{-8} \mathrm{~W}$
Option (B) is correct
(C) $\lambda_{\mathrm{m}} \mathrm{T}=\mathrm{b}$
$\lambda_{\mathrm{m}} \times 2500=2.9 \times 10^{-3}$
$\Rightarrow \lambda_{\mathrm{m}}=1.16 \times 10^{-6}$
$=1160 \mathrm{~nm}$
Option (C) is correct
(D) Power received by one eye of observer
$=\left(\frac{\mathrm{hc}}{\lambda}\right) \times \mathrm{N}$
$\mathrm{N}=$ Number of photons entering into eye per second $\Rightarrow 3.189375 \times 10^{-8}$
$=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{1740 \times 10^{-9}} \times \mathrm{N}$
$\Rightarrow \mathrm{N}=2.79 \times 10^{11}$
Option (D) is correct
Q. 14 (8.33)
$\frac{\mathrm{dQ}}{\mathrm{dt}}=\sigma \mathrm{eA}\left(\mathrm{T}^{4}-\mathrm{T}_{0}^{4}\right)$
$\left.\frac{\mathrm{dQ}}{\mathrm{Adt}}=\mathrm{e} \mathrm{\sigma}\left(\mathrm{~T}_{0}+\Delta \mathrm{T}\right)^{4}-\mathrm{T}_{0}^{4}\right)=\sigma \mathrm{T}_{4}^{0}\left[\left(1+\frac{\Delta \mathrm{T}}{\mathrm{T}_{0}}\right)^{4}-1\right]$
$=\operatorname{e\sigma T} \mathrm{T}_{0}^{4}\left[\left(1+4 \frac{\Delta \mathrm{~T}}{\mathrm{~T}_{0}}\right)-1\right]$
$\frac{\mathrm{dQ}}{\mathrm{Adt}}=\sigma e \mathrm{~T}_{0}^{3} \cdot 4 \Delta \mathrm{~T}$
Now from equ. (i)
$\mathrm{ms} \frac{\mathrm{dT}}{\mathrm{dt}}=\sigma e \mathrm{~T}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}^{4}\right)$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\sigma \mathrm{eA}}{\mathrm{ms}}\left[\left(\mathrm{T}_{0}+\Delta \mathrm{T}\right)^{4}-\mathrm{T}_{0}^{4}\right]$
$=\frac{\sigma e \mathrm{~A}}{\mathrm{~ms}} \mathrm{~T}_{0}^{4} \times\left[\left(1+\frac{\Delta \mathrm{T}}{\mathrm{T}_{0}}\right)^{4}-1\right]$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\frac{\sigma e \mathrm{~A}}{\mathrm{~ms}} \mathrm{~T}_{0}^{4} .4 \Delta \mathrm{~T}$
$\frac{\mathrm{dT}}{\mathrm{dt}}=\mathrm{e} \Delta \mathrm{T} ;\left(\mathrm{K}=\frac{4 \sigma \mathrm{et} \mathrm{T}_{0}^{3}}{\mathrm{~ms}}\right)$
$\Rightarrow 4 \sigma e \mathrm{AT}_{0}^{3}=\frac{\mathrm{K}}{\mathrm{A}}(\mathrm{ms})$
fromequ. (i)
$\frac{\mathrm{dQ}}{\mathrm{Adt}}=\mathrm{e}_{\mathrm{T}}^{0} \mathrm{~T}_{0}^{3} .4 \Delta \mathrm{~T}$
$700=(\mathrm{K} / \mathrm{A})(\mathrm{ms}) \Delta \mathrm{T}$
$\therefore \Delta \mathrm{T}=\frac{700 \times 5 \times 10^{-2}}{10^{-3} \times 4200}=\frac{50}{6}=\frac{25}{3}$
$\Delta \mathrm{T}=8.33$

Kinetic Theory of Gases and Thermodynamics

EXERCISES-I

ELEMENTARY

Q. 1
 (1)

$\mathrm{V} \propto \mathrm{T} \Rightarrow \frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \Rightarrow \frac{200}{\mathrm{~V}_{2}}=\frac{(273+20)}{(273-20)}=\frac{293}{253}$
$\mathrm{V}_{2}=\frac{200 \times 253}{293}=172.6 \mathrm{~m} l$
Q. 2 (2)
$\overrightarrow{\mathrm{P}}=\mathrm{MV} \mathrm{av}, \mathrm{As} \overrightarrow{\mathrm{V}} \mathrm{av}=0$ (in equilibrium)
$\therefore \overrightarrow{\mathrm{P}}_{\mathrm{av}}=0$
Q. 3 (2)

The collision of molecules of ideal gas is elastic collision
Q. 4 (3)
one molecule has some single value of speed which is equal average speed and rms speed of the gas

$$
\therefore \mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{rms}} .
$$

Q. 5 (2)
$\mathrm{V}_{\mathrm{av}} \propto \frac{1}{\sqrt{\mathrm{M}_{0}}}$
\therefore oxygen molecule hits the wall with smaller average speed
Q. 6 (2)
$\mathrm{V}_{\mathrm{av}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}_{0}}}, \mathrm{~V}_{\mathrm{AV}} \alpha \sqrt{\mathrm{T}}$
For same temp in vessel A, B and C, Average speed of O_{2} molecule is same in vessel A and C and is equal to V_{1}.
Q. 7 (2)

As $\Delta \mathrm{U}$ is a state function i.e., it depends initial and final position in process A and B initial and final temp are same.
$\therefore \quad \Delta \mathrm{U},=\Delta \mathrm{U}_{2}$.
Q. 8 (2)
$\mathrm{T}_{2}=\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right) \mathrm{T}_{1}=\left(\frac{1.5 \mathrm{~V}}{\mathrm{~V}}\right) \times(273+27)=450 \mathrm{~K}$
$\Rightarrow 177^{\circ} \mathrm{C}$
Q. 9 (4)

$$
\mathrm{v}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}=\mathrm{v}_{\mathrm{rms}} \propto \frac{1}{\sqrt{\mathrm{~m}}}
$$

Q. 10 (2)

$$
\mathrm{v}_{\mathrm{rms}} \propto \sqrt{\mathrm{~T}}
$$

Q. 11 (3)

$$
\mathrm{V}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{0}}}
$$

Q. 12 (3)

$$
\mathrm{V} \propto \mathrm{~T} \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \Rightarrow \frac{\mathrm{~V}}{2 \mathrm{~V}}=\frac{(273+27)}{\mathrm{T}_{2}}=\frac{300}{\mathrm{~T}_{2}}
$$

$$
\mathrm{T}_{2}=600 \mathrm{~K}=327^{\circ} \mathrm{C}
$$

Q. 13 (1) $\mathrm{V} \propto \mathrm{T}$ (as constant pressure)
Q. 14 (3) Boyle's and Charle's law follows kinetic theory of gases
Q. 15 (1)

A monoatomic gas molecule has only three translational degree of freedom.
Q. 16 (3)

A diatomic molecule has three translational and two rotational degree of freedom.
Hence t otal degree of freedom $f=3+2=5$
Q. 17 (1)

$$
\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\gamma=1+\frac{2}{\mathrm{f}}
$$

Q. 18 (3)

As compare to gas solid expand very less.
$\therefore \mathrm{C}_{\mathrm{p}}$ is slightly greater then C_{v}.
Q. 19 (1)
$(\Delta \mathrm{Q})_{v}=\mu \mathrm{C}_{\mathrm{v}} \Delta \mathrm{T} \Rightarrow(\Delta \mathrm{Q})_{\mathrm{v}}=1 \times \mathrm{C}_{\mathrm{v}} \times 1=\mathrm{C}_{\mathrm{v}}$
For monoatomic gas $C_{v}=\frac{3}{2} R \Rightarrow(\Delta Q)_{v}=\frac{3}{2} R$
Q. 29 (2)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W} ; \Delta \mathrm{Q}=200 \mathrm{~J}$ and $\Delta \mathrm{W}=-100 \mathrm{~J}$
$\Rightarrow \Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}=200-(-100)=300 \mathrm{~J}$
(4)

Heat given $\Delta \mathrm{Q}=20 \mathrm{ca}=20 \times 4.2=84 \mathrm{~J}$.

Work done $\Delta \mathrm{W}=-50 \mathrm{~J}$
[As process is anticlockwise]
By first law of thermodynamics $\Rightarrow \Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}=84$ $-(-50)=134 \mathrm{~J}$

Q. 31 (3)

In isothermal process temperature remains constant.
Q. 32 (1)

For free expansion
$\mathrm{Q}=0, \mathrm{~W}=0, \Delta \mathrm{U}=0$
Q. 33 (3)
Q. 24 (2)

As Volume decreases
\therefore pressure of the gas in the cylinder increases
Q. 25 (1)
$\Delta \mathrm{Q}=\mathrm{AU}+\Delta \mathrm{W}$ and $\Delta \mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
Q. 26 (2)

In process AB
T = constant
$\mathrm{P}=$ increases $\mathrm{P} \alpha \frac{1}{\mathrm{~V}}$
$\begin{array}{ll}\text { or } \mathrm{V}=\text { decreases } & \Delta \mathrm{Q}=\Delta \mathrm{W} . \\ \Delta \mathrm{W}=- \text { ve. } & \text { or } \\ \Delta \mathrm{Q}=- \text { ve } & \end{array}$
\therefore heat is rejected out of the system
Q. 27 (2)
$\Delta \mathrm{Q}=\Delta \mathrm{W}$
($\mathrm{T}=$ constant)
if heat is supplied then $\quad \Delta \mathrm{W}=+\mathrm{ve}$
Q. 28 (2)

B $\rightarrow \mathrm{A}$
$\Delta \mathrm{Q}=0$
$0=-30+\Delta \mathrm{U}_{\mathrm{BA}}$
$\Delta \mathrm{U}_{\mathrm{BA}}=30 \mathrm{~J}$
$\therefore \Delta \mathrm{U}_{\mathrm{AB}}=-\Delta \mathrm{U}_{\mathrm{BA}}=-30 \mathrm{~J}$
Q. 34 (1)
$\mathrm{E}_{\theta}=\mathrm{P}$
Q. 35 (3)

For free expansion
$\Delta \mathrm{U}=0$ or $\Delta \mathrm{T}=0$
$\therefore \mathrm{U}$ or $\mathrm{T}=\mathrm{const}$
Q. 36 (3)

Adiabatic process
$\Delta \mathrm{Q}=0$
For any process
$\Delta_{\mathrm{v}}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
Hence, option (3) is correct.
Q. 37 (1)

Work done
Q. 38 (1)

Initial and final states are same in all the process.
Hence $\Delta U=0$; in each case.
By FLOT; $\Delta \mathrm{Q}=\Delta \mathrm{W}=$ Area enclosed by curve with volume axis.
$\because(\text { Area })_{1}<(\text { Area })_{2}<(\text { Area })_{1} \Rightarrow \mathrm{Q}_{1}<\mathrm{Q}_{2}<\mathrm{Q}_{3}-$.
Q. 39 (1)
$\eta_{\text {max }}=1-\frac{T_{2}}{T_{1}}=1-\frac{300}{400}=\frac{1}{4}=25 \%$
So 26 \% efficiency is impossibel

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (3)

$$
\mathrm{V}_{\mathrm{av}}=\sqrt{\frac{8 \mathrm{KT}}{\pi \mathrm{~m}}}, \text { as } \mathrm{T}=\text { constant } \quad \therefore \mathrm{V}_{\mathrm{av}}=\text { constant }
$$

Q. 2 (4)
$\vec{P}_{\mathrm{av}}=M \vec{V}_{\mathrm{av}}$, as the average momentum of an ideal gas is zero
\therefore option D is correct.
Q. 3 (1)

$$
\begin{aligned}
& \sqrt{\frac{3 \mathrm{RT}}{32}}=\sqrt{\frac{3 \mathrm{R} \times 273}{28}} \\
& \mathrm{~T}=\frac{273 \times 32}{28}=426.3 \mathrm{k} .
\end{aligned}
$$

Q. 4 (2)

Real gas behaves as an ideal gas at low pressure and high temperature
Q. 5 (3)
one molecule has some single value of speed which is equal most probabla speed and average speed of the gas
$\therefore \quad \mathrm{V}_{\mathrm{mp}}=\mathrm{V}_{\mathrm{av}}$.
Q. 6 (3)
$\mathrm{V}_{\mathrm{AV}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}_{0}}}=\mathrm{v}$
for nitrogen $V_{A V}=\sqrt{\frac{8 R \times 2 T}{\pi M_{0} / 2}}=v$.
for nitrogen
$\mathrm{V}_{\mathrm{AV}}=\sqrt{\frac{8 \mathrm{R} \times 2 \mathrm{~T}}{\pi \mathrm{M}_{0} / 2}}=\mathrm{v}$.
Q. 7
Q. 8
(2)

$$
\mathrm{V}_{\mathrm{av}} \alpha \frac{1}{\sqrt{\mathrm{M}_{0}}}
$$

$\therefore \quad$ oxygen molecule hits the wall with smaller average speed
$\mathrm{V}_{\mathrm{av}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}_{0}}}, \mathrm{~V}_{\mathrm{AV}} \alpha \sqrt{\mathrm{T}}$
For same temp in vessel A, B and C, Average speed of O_{2} molecule is same in vessel A and C and is equal to V_{1}.
Q. 9 (1)

As translation K.E is $=\frac{3}{2} \mathrm{nRT}$
$\mathrm{E}=\frac{3}{2} \mathrm{PV}$
where $\mathrm{E}=$ total translational K.E.
Q. 10 (3)

For an ideal gas, the no of molecules of equal moles of gas is same .
Q. 11 (3)

From the formula
$V_{\mathrm{rms}}=\sqrt{\frac{3 R T}{\mathrm{M}_{0}}}$
$\mathrm{V}_{\mathrm{rms}_{\mathrm{o}_{2}}}=\sqrt{\frac{3 \mathrm{RT}_{\mathrm{o}_{2}}}{\mathrm{M}_{\mathrm{o}_{2}}}} \quad \Rightarrow$
$\mathrm{V}_{\mathrm{rmso}}=\sqrt{\frac{3 \mathrm{RT}_{\mathrm{o}_{2}} \times 2}{\mathrm{M}_{\mathrm{o}_{2}} / 2}}=2 \sqrt{\frac{3 \mathrm{RT}_{\mathrm{o}_{2}}}{\mathrm{M}_{\mathrm{o}_{2}}}}=2 \mathrm{~V}$
Q. 12 (2)

The average velocity is given as
$\mathrm{V}_{\mathrm{av}}=\sqrt{\frac{8 \mathrm{RT}}{\pi \mathrm{M}}}$
Independent of other gases. Hence average velocity of oxigen in third container will be V_{1} only. $=7.66$ u
Q. 13 (4)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{avg}}=\frac{1+2+3 \ldots \ldots \ldots \mathrm{~N}}{\mathrm{~N}}=\frac{\mathrm{N}(\mathrm{~N}+1)}{2 \mathrm{~N}}=\frac{(\mathrm{N}+1)}{2} \\
& \mathrm{~V}_{\mathrm{rms}}=\sqrt{\frac{1^{2}+2^{2}+\ldots \ldots \ldots \mathrm{N}^{2}}{\mathrm{~N}}}=\sqrt{\frac{2 \mathrm{~N}+1}{6}} \\
& \frac{\mathrm{~V}_{\mathrm{rms}}}{\mathrm{~V}_{\mathrm{avg}}}=\frac{2}{(\mathrm{~N}+1)} \sqrt{\frac{2 \mathrm{~N}+1}{3}}
\end{aligned}
$$

Q. 14 (1)

Average rotational K. E. $=\frac{1}{2} \mathrm{KT} \times 2=\mathrm{KT}$
So it will be same for both the gases.
Q. 15 (1)

We are given $\mathrm{P}=\frac{2 \mathrm{E}}{3 \mathrm{~V}}$.
$P V=\frac{2}{3} E$
$\mathrm{E}=\frac{3}{2} \mathrm{nRT}$.
Here E is the Translational K.E. for all the particles.
Q. 16 (1)

We know that
$P V=n R T$
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{1.3 \times 10^{5} \times\left[7 \times\left(10^{-2}\right)^{3} \times 10^{3}\right]}{8.3 \times 273}$
So, Number of molecules is

$$
=\frac{1.3 \times 10^{5} \times 7 \times 10^{-3}}{8.3 \times 273} \times 6.023 \times 10^{23}=2.4 \times 10^{23}
$$

Q. 17 (1)
$\frac{\mathrm{Pm}}{\rho}=\mathrm{nRT}$
slope of $\mathrm{T}_{1}>$ slope of T_{2}
$\therefore \mathrm{T}_{1}>\mathrm{T}_{2}$
Q. 18 (3)

$$
\mathrm{PV}=\mathrm{nRT}
$$

\therefore temperature remains same for all ideal gas
Q. 19 (3)

As the volume remains constant on increasing temperature pressure becomes double.
$\mathrm{V}=$ const.
T = doubled
$\mathrm{p}=2 \mathrm{P}$ 。

Q. 20 (4)
$\mathrm{U}=\frac{\mathrm{nfRT}}{2}=\frac{\mathrm{nf} \mathrm{N}_{\mathrm{A}} \mathrm{kT}}{2}$

$$
\frac{2 \mathrm{U}}{\mathrm{fkT}}=\mathrm{nN}_{\mathrm{A}}=\mathrm{N}
$$

Q. 21 (2)

As $\Delta \mathrm{U}$ is a state function i.e., it depends initial and final position
in process A and B initial and final temp are same.
$\therefore \quad \Delta \mathrm{U},=\Delta \mathrm{U}_{2}$.
Q. 22 (4)

As $\Delta \mathrm{U}=\mathrm{nR} \Delta \mathrm{T}$
For closed path

$$
\Delta \mathrm{T}=0
$$

$\therefore \quad \Delta \mathrm{U}=0$.
Q. 23 (4)

As $C_{p}-C_{v}=R$
For above equation, we can say that both C_{p} and C_{v} increase by same amount.
Q. 24 (3)
$\mathrm{s}=\frac{\mathrm{Q}}{\mathrm{m} \Delta \mathrm{T}}$
For changing state
$\mathrm{T}=$ const or $\Delta \mathrm{T}=0$
$\therefore \mathrm{s}=\infty$ (infinite)
Q. 25 (1)

As $f=5$
$\mathrm{dU}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}=\frac{\mathrm{nfRdT}}{2}$
$C_{v}=\frac{f R}{2}$
$\therefore \mathrm{C}_{\mathrm{v}}=\frac{5 \mathrm{R}}{2}$
Q. 26 (3)

Gas has different specific heat for different processes \therefore gas has infinite number of specific heats.
Q. 27 (3)
$\Delta \mathrm{U}>0$
and $\Delta \mathrm{W}>0$
$\therefore \mathrm{C}>\mathrm{C}_{\mathrm{v}}$
Q. 28 (3)

As compare to gas solid expand very less.
$\therefore \mathrm{C}_{\mathrm{p}}$ is slightly greater then C_{v}.
Q. 29 (3)

In the final condition.
Let atmospheric pressure is P and ht of liquid column is h.

$$
\begin{aligned}
& \mathrm{P}+\mathrm{h}=76 \\
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \\
& 76 \times 5=\mathrm{P}(43-\mathrm{h})
\end{aligned}
$$

$380=(76-h)(43-h)$
$\mathrm{h}=38 \mathrm{~cm}$
So, $48-\mathrm{h}=10 \mathrm{~cm}=0.1 \mathrm{~m}$.

$$
\begin{array}{ll}
\text { Q. } 30 & \text { (1) } \\
& \mathrm{P}+50=75 \\
& \mathrm{P}=25 \mathrm{~cm} \text { of } \mathrm{H}_{\mathrm{g}} \\
& \frac{10^{5}}{75} \times 25 \\
& =33.3 \mathrm{kPa}
\end{array}
$$

Q. 31 (1)
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$\frac{1}{2} m v^{2}=\frac{m}{.03}\left(\frac{5}{2} R\right) \Delta T$
$\Delta \mathrm{T}=\frac{.03 \times 100^{4}}{5 \mathrm{R}}=\frac{6 \times 10^{-3} \times 10^{4}}{\mathrm{R}}=\frac{60}{\mathrm{R}}$
Q. 32 (1)
$\mathrm{T} \alpha \mathrm{P}$ or $\frac{\mathrm{P}}{\mathrm{T}}=$ constant

As $\frac{\mathrm{P}}{\mathrm{T}}=\frac{\mathrm{nR}}{\mathrm{V}}=$ constant or $\mathrm{V}=$ constant
$\therefore \mathrm{W}=0$.
Q. 33 (4)
work done on the gas $=$ negative work
W = PdV
when $\mathrm{V} \rightarrow$ decreases
then $\mathrm{W}=-\mathrm{ve}$
hence option D is correct.
Q. 34 (1)

As volume increases
\therefore WD continuously increases
Q. 35 (3)

As $\mathrm{W}=\mathrm{P} \Delta \mathrm{V}$
$\Delta \mathrm{V}=$ same is both process
As $\quad \mathrm{P}_{\mathrm{B}}>\mathrm{P}_{\mathrm{A}}$
$\therefore \quad \Delta \mathrm{W}_{2}>\mathrm{W}_{1}$.
As $\quad P_{B}>P_{A}$
$\therefore \quad \Delta \mathrm{W}_{2}>\mathrm{W}_{1}$.
Q. 36 (2)
$W=\int_{V_{1}}^{\mathrm{V}_{2}} \mathrm{PdV}$

$$
\begin{aligned}
& =\int_{V_{1}}^{V_{2}} a V^{2} d V=a\left[\frac{V^{3}}{3}\right]_{V_{1}}^{V_{2}}=\frac{a}{3}\left(V_{2}^{3}-V_{1}^{3}\right) \\
& =\frac{1}{3}\left[P_{2} V_{2}-P_{1} V_{1}\right]=\frac{1}{3}[n R \Delta T]=\frac{1}{3} R\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Q. 37 (1)
Q. 38 (4)
$\Delta \mathrm{U}=$ same is both process
$\mathrm{Q}_{\mathrm{acb}}-\mathrm{W}_{\mathrm{acb}}=\mathrm{Q}_{\mathrm{adb}}-\mathrm{W}_{\mathrm{adb}}$.
$200-80=144-\mathrm{W}_{\mathrm{adb}}$.
$\mathrm{W}_{\mathrm{adb}}=24 \mathrm{~J}$.
Q. 39 (2)

$$
\begin{aligned}
& \Delta \mathrm{U}=\mathrm{Q}_{\mathrm{acc}}-\mathrm{W}_{\mathrm{acb}}=200-80=120 \mathrm{~J} \\
& \Delta \mathrm{U}=\mathrm{Q}_{\mathrm{ba}}-\mathrm{W}_{\mathrm{ba}}-120=\mathrm{Q}_{\mathrm{ba}}+52, \mathrm{Q}_{\mathrm{ba}}=-172 \mathrm{~J} .
\end{aligned}
$$

Q. 40 (4)

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{b}}-\mathrm{U}_{\mathrm{a}}=120 \\
& \mathrm{U}_{\mathrm{b}}=120+40=160 \mathrm{~J}
\end{aligned}
$$

Q. 41 (2)
in db.
$\mathrm{W}_{\mathrm{db}}=0$
$\mathrm{U}_{\mathrm{b}}-\mathrm{U}_{\mathrm{d}}=\mathrm{Q}_{\mathrm{db}}$.
$160-88=Q_{\text {db }}$
$\mathrm{Q}_{\mathrm{db}}=72 \mathrm{~J}$.
Q. 42 (2)
$\mathrm{B} \rightarrow \mathrm{A}$
$\Delta \mathrm{Q}=0$
$0=-30+\Delta \mathrm{U}_{\mathrm{BA}}$
$\Delta \mathrm{U}_{\mathrm{BA}}=30 \mathrm{~J}$
$\therefore \Delta \mathrm{U}_{\mathrm{AB}}=-\Delta \mathrm{U}_{\mathrm{BA}}=-30 \mathrm{~J}$
Q. 43 (2)

$$
\begin{aligned}
& \Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{Q} \\
& \Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}
\end{aligned}
$$

$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{P}_{\mathrm{o}} \Delta \mathrm{V}$
$\Delta \mathrm{U}=\mathrm{Q}-\mathrm{P}_{\mathrm{o}}\left(\frac{1}{\rho_{2}}-\frac{1}{\rho_{1}}\right)$
Q. 44 (4)
$\mathrm{W}_{\text {net }}=\mathrm{W}_{1-2}+\mathrm{W}_{2 \rightarrow 3}+\mathrm{W}_{3-1}$
$10=W_{1-2}+0-20$
$\mathrm{W}_{1-2}=30 \mathrm{~J}$
$\Delta \mathrm{U}_{1-2}=0$
$\therefore \Delta \mathrm{Q}_{1-2}=\Delta \mathrm{W}_{1-2}+\Delta \mathrm{U}_{1 \rightarrow 2}=30 \mathrm{~J}$
Q. 45 (1)
$\Delta \mathrm{Q}=\Delta \mathrm{W}+3 \Delta \mathrm{~W}$
$=4 \Delta \mathrm{~W}$
$\because \mathrm{n}=\frac{\Delta \mathrm{W}}{\Delta \mathrm{Q}}=\frac{\Delta \mathrm{W}}{4 \Delta \mathrm{~W}}=0.25$
Q. 46 (1)

Free Expansion
So, $\left.\begin{array}{c}\Delta \mathrm{W}=0 \\ \Delta \mathrm{Q}=0\end{array}\right] \Rightarrow \Delta \mathrm{U}=0 \quad \Rightarrow \Delta \mathrm{~T}=0$
and $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2}\left(2 \mathrm{~V}_{1}\right)$
$P_{2}=\frac{P_{1}}{2}$
Q. 47 (4)
$\mathrm{I}^{\text {t }}$ Process
$\Delta \mathrm{U}_{1}=\Delta \mathrm{Q}_{1}-\Delta \mathrm{W}_{1}$
$=16-20=-4 \mathrm{KJ}$
II ${ }^{\text {nd }}$ Process
$\Delta \mathrm{W}_{2}=\Delta \mathrm{Q}_{2}-\Delta \mathrm{U}_{2}$
$\Delta \mathrm{U}_{1}=\Delta \mathrm{U}_{2} \quad(\therefore \Delta \mathrm{~T}=$ same $)$
So, $\Delta W_{2}=[9-(-4)]=13 \mathrm{KJ}$
Q. 48 (3)
Q. 49 (2)

As $P V=n R T \quad m=\rho V=$ constant or $\rho \alpha \frac{1}{V}$ and $P \alpha \rho$
$\mathrm{A} \rightarrow \mathrm{B} \quad \mathrm{T}=$ constant, pressure increases or volume decreases
$\mathrm{B} \rightarrow \mathrm{C} \quad$ Volume is constant, $\mathrm{V}=$ constant
$\mathrm{C} \rightarrow \mathrm{D} \quad \mathrm{P}$ is decreases or volume increases [$\mathrm{T}=$ constant]
$\mathrm{D} \rightarrow \mathrm{A} \quad$ Volume is constant $\mathrm{V}=$ with constant, clearly option ' B ' is constant.
Q. 50 (2)
$\Delta \mathrm{U}=0$
$\therefore \mathrm{T}=\mathrm{constant}$
or $\mathrm{PV}=$ constant or $\mathrm{P}-\mathrm{V}$ curve is a rectangular hyperbola.
clearly, option B is correct.
Q. 51 (3)
$\frac{V}{T}=\frac{n R}{P}$
$\frac{1}{\mathrm{P}} \alpha$ slope or $\mathrm{P} \alpha \frac{1}{\text { slope }}$
$\therefore \mathrm{P}_{2}<\mathrm{P}_{1}$
Q. 52 (4)

In isothermal expansion

$$
\begin{aligned}
& \mathrm{T}=\text { constant } \\
& \mathrm{W}=\Delta \mathrm{Q} \\
& \therefore \quad \text { option }(4) \text { is correct. }
\end{aligned}
$$

Q. 53 (3)
W.D. $=\pi \times$ Pressure Radius \times volume Radius (area of ellipse)
$\mathrm{W}=\pi\left(\frac{\mathrm{P}_{2}-\mathrm{P}_{1}}{2}\right)\left(\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{2}\right)=\frac{\pi}{4}\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
Q. 54 (2)
$\mathrm{L} \rightarrow \mathrm{M}$
$\mathrm{P}=$ constant
$\mathrm{V} \alpha \mathrm{T}$.
MN T = constant
Here, option B is constant
Q. 55 (1)

As initial and final state are same
$\therefore \quad \mathrm{T}_{\mathrm{I}}=\mathrm{T}_{\mathrm{F}}$ As $\mathrm{V}_{\mathrm{rms}}, \overrightarrow{\mathrm{P}}_{\mathrm{av}}$ and $\overrightarrow{\mathrm{K}}_{\mathrm{av}}$ depends on temperature
$\therefore \quad$ all are equal.
Q. 56 (2)

In process $A B$
$\mathrm{T}=$ constant
$P=$ increases $P \alpha \frac{1}{V}$
or $\quad \mathrm{V}=\operatorname{decreases} \Delta \mathrm{Q}=\Delta \mathrm{W}$.
$\Delta \mathrm{W}=-\mathrm{ve}$. or $\Delta \mathrm{Q}=-\mathrm{ve}$
\therefore heat is rejected out of the system.
Q. 57 (3)
$\Delta \mathrm{Q}=\Delta \mathrm{W}(\mathrm{T}=$ constant $)$ if heat is released then
$W=-\mathrm{ve}$
Q. 58 (4)

$$
\begin{aligned}
& \mathrm{dQ}=\mathrm{dW}+\mathrm{dU} \\
& \mathrm{dQ}=\mathrm{PdV}+\mathrm{dU} \\
& \mathrm{dQ}=\mathrm{nRdT}+\mathrm{dU} \\
& \mathrm{dQ}=\frac{2 \mathrm{dU}}{\mathrm{f}}+\mathrm{dU}\left[\mathrm{dU}=\frac{\mathrm{n} f R \mathrm{RdT}}{2}\right]
\end{aligned}
$$

$$
\frac{d U}{d Q}=\frac{1}{\left(\frac{2}{f}+1\right)}
$$

$$
\frac{d U}{d Q}=\frac{5}{7}
$$

Q. 59 (2)

As Volume decreases
\therefore pressure of the gas in the cylinder increases
Q. 60 (1)
$\mathrm{AB} \rightarrow$ isothermal
$\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
$\mathrm{BC} \rightarrow$ Adiabatic
$\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}{ }^{\gamma}=\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}{ }^{\gamma}$
$\mathrm{CD} \rightarrow$ Isothermal
$\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}=\mathrm{P}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}}$
$\mathrm{DA} \rightarrow$ Adiabatic
$\mathrm{P}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}}{ }^{\gamma}=\mathrm{P}_{\mathrm{A}} \mathrm{V}_{\mathrm{A}}{ }^{\gamma}$
From (i), (ii), (iii) and (iv)
$\frac{\mathrm{V}_{\mathrm{B}}}{\mathrm{V}_{\mathrm{C}}}=\frac{\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{D}}}$
Q. 61 (1)

For adiabatic
$\mathrm{T}^{\gamma-1}=\mathrm{C}(\gamma>1)$
For isothermal $\mathrm{T}=$ const(ii)
From (i) and (ii)
$\mathrm{T}_{2}<\mathrm{T}_{1}$
Q. 62 (3)

For isothermal

$$
\begin{equation*}
P V=C . \text { or } P_{1} \propto \frac{1}{V_{1}} \tag{i}
\end{equation*}
$$

For adiabatic
$\mathrm{PV}^{\gamma}=\mathrm{C}, \quad \mathrm{P}_{2} \propto \frac{1}{\mathrm{~V}_{2}^{\gamma}}$
from (i) and (ii)
$\mathrm{P}_{1}>\mathrm{P}_{2}$
Q. 63 (1)

As W.D. by gas in isothermal is more as compare to adiabatic process
$\therefore \Delta \mathrm{W}_{2}<\Delta \mathrm{W}_{1}$

Q. 64 (3)

Isothermal $P \propto \frac{1}{V}$
Adiabatic $\mathrm{P} \propto \frac{1}{\mathrm{~V}^{\gamma}}$
Also, slope of adiabatic is more as compare to isothermal
\therefore option (3) is correct.

Q. 65 (3)

Adiabatic process
$\Delta \mathrm{Q}=0$
For any process
$\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
Hence, option (3) is correct.
Q. 66 (4)

$$
\begin{aligned}
& \mathrm{B}=\gamma \mathrm{P} \text { (for adiabatic process) } \\
& \mathrm{B}=1.4 \times 1 \times 10^{5}=1.4 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

Q. 67 (2)
$B=\frac{V d P}{d V}=-\frac{(-P d V)}{d V}$ (for isothermal process)
$B=P$
Q. 68 (2)

Slope $=-\gamma \frac{d P}{d V}$
As slope of A > slope of B
$\therefore \gamma$ of $\mathrm{A}>\gamma$ of B
or $\mathrm{A} \rightarrow$ Helium
B \rightarrow Hydrogen
Q. 69 (3)

For free expansion
$\Delta \mathrm{U}=0$ or $\Delta \mathrm{T}=0$
$\therefore \mathrm{U}$ or $\mathrm{T}=\mathrm{const}$
Q. 70 (1)

For free expansion
$\mathrm{Q}=0, \mathrm{~W}=0, \Delta \mathrm{U}=0$
Q. 71 (1)
$\frac{d P}{P}=-\gamma \frac{d V}{V}$ (For adiabatic)
$0.5=-1.4 \frac{\mathrm{dV}}{\mathrm{V}}$
\therefore Volume decrease by 0.36%

Q. 72 (4)

XY Adiabatic compresion
YZ Isothermal Expansion
ZX Compression at constant pressure
Q. 73 (1)

Self explainatory
Q. 74 (1)

As W.D. is isobaric > W.D. in Isothermal > W.D in adiabatic
or $\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{3}$
Hence option (1) is correct.
Q. 75 (1)

Process ...(1) is isobaric
$\Delta \mathrm{U}_{1}=\Delta \mathrm{Q}-\Delta \mathrm{W}=$ positive
process (2) is isothermal

$$
\Delta \mathrm{U}_{2}=0
$$

Process (3) is adiabatic
$\Delta \mathrm{Q}=0$
$\Delta \mathrm{U}=-\Delta \mathrm{W}=$ negative
$\therefore \quad \Delta \mathrm{U}_{1}>\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{3}$
Q. 76 (1)

$$
\text { As } \begin{aligned}
& \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \\
& \Delta \mathrm{U}=-\mathrm{W} \text { (given) } \\
& \text { or } \Delta \mathrm{Q}=0
\end{aligned}
$$

$\therefore \quad$ Process is adiabatic
Q. 77 (4)

For polytropic process $\mathrm{PV}^{\mathrm{x}}=\mathrm{k}$;
$\mathrm{C}=\mathrm{C}_{\mathrm{v}}+\frac{\mathrm{R}}{1-\mathrm{x}} \Rightarrow \mathrm{As} \mathrm{PV}^{2}=\mathrm{K}($ given $) \Rightarrow$ Put $\mathrm{x}=2$
$\mathrm{C}=\mathrm{C}_{\mathrm{v}}+\frac{\mathrm{R}}{1-2}=\mathrm{C}_{\mathrm{v}}-\mathrm{R}$.
$\therefore \mathrm{C}<\mathrm{C}_{\mathrm{v}}$.
Q. 78 (3)
$\mathrm{PT}=$ constant
$\mathrm{P}\left(\frac{\mathrm{PV}}{\mathrm{nR}}\right)=$ constant
$\mathrm{P}^{2} \mathrm{~V}=$ constant. Therefore the graph C is suitable.
Q. 79 (1)

From the graph shown.
$V_{a v} \propto \sqrt{T} \propto \sqrt{P V}$
$\mathrm{V}_{\mathrm{av}_{1}}: \mathrm{V}_{\mathrm{av}_{2}}: \mathrm{V}_{\mathrm{av}_{3}}$
$\sqrt{\mathrm{V}_{\mathrm{o}} \mathrm{P}_{\mathrm{o}}}: \sqrt{\mathrm{V}_{\mathrm{o}} .4 \mathrm{P}_{\mathrm{o}}}: \sqrt{4 \mathrm{~V}_{\mathrm{o}} \mathrm{P}_{\mathrm{o}}}$
1:2:2
Q. 80 (2)

From ideal gas equation
$\mathrm{PV}=\mathrm{nRT}$
$\mathrm{PV}=\frac{\mathrm{m}}{\mathrm{M}} \mathrm{RT} \Rightarrow \frac{\mathrm{V}}{\mathrm{T}}=\frac{\mathrm{mR}}{\mathrm{MP}}=\mathrm{C}_{\mathrm{B}}$
In second case

$$
\frac{\mathrm{V}}{\mathrm{~T}}=\frac{2 \mathrm{mR}}{\mathrm{M}}
$$

Q. 81 (3)
$\mathrm{PV}^{\gamma}=$ constant

$$
\begin{aligned}
& \mathrm{V}^{\gamma} \frac{\mathrm{dP}}{\mathrm{dV}}=\gamma \mathrm{PV}^{\gamma-1} \frac{\mathrm{dV}}{\mathrm{dV}}=0 \\
& \frac{\mathrm{dP}}{\mathrm{dV}}=\frac{-\gamma \mathrm{PV}^{\gamma-1}}{\mathrm{~V}^{\gamma}}=\frac{-\gamma \mathrm{P}}{\mathrm{~V}} \\
& =-1.4 \times \frac{0.7 \times 10^{5}}{0.0049} \\
& =-2 \times 10^{7}
\end{aligned}
$$

Q. 82 (1)
$\Delta \mathrm{W}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{PdV}=\int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}} \mathrm{KVdV} \quad \because \frac{\mathrm{P}}{\mathrm{V}}=\mathrm{K}$
$=\frac{{K V_{2}{ }^{2}-K V_{1}{ }^{2}}_{2}^{2}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{2},{ }^{2}}{}$
$\Rightarrow \Delta \mathrm{U}=\frac{3}{2} \mathrm{R}\left(2 \mathrm{~T}_{0}-\mathrm{T}_{0}\right)=\frac{3}{2} \mathrm{RT}_{0}$
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}=2 \mathrm{RT}_{0}$
Q. 83 (4)
$P V^{\gamma}=K$
$\ln P+\gamma \ln V=\ln K$
Differentiate both sides
$d(\ln P)+\gamma d(\ln V)=0$
$\frac{d(\ln P)}{d(\ln V)}=-\gamma$
$\gamma_{B}>\gamma_{A} \Rightarrow B$ is monoatomic
Gas A is diatomic
Q. 84 (1)

$$
\begin{aligned}
& T_{1}^{\gamma} P_{1}^{1-\gamma}=T_{2}^{\gamma} P_{2}^{1-\gamma} \\
& T_{2}=T_{1}\left(\frac{P_{1}}{P_{2}}\right)^{1-\gamma / \gamma}=300\left(\frac{1}{4}\right)^{\frac{1-\frac{4}{3}}{\frac{4}{3}}}=300 \sqrt{2}
\end{aligned}
$$

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q. 1 (C)

$\mathrm{PA}-\mathrm{dmg}-(\mathrm{P}+\mathrm{dP}) \mathrm{A}=\mathrm{dmg}$
$-\mathrm{AdP}=2 \mathrm{dmg}$
$-\mathrm{AdP}=2 \rho \mathrm{Adx} \mathrm{g}$
$-\mathrm{dP}=2 \rho \mathrm{~g} \mathrm{dx}$. Where $\rho=\frac{\mathrm{m}}{\mathrm{V}}$
$P V=\frac{m}{M} R T$
$\frac{P M}{R T}=\frac{m}{V}$
$\rho=\frac{\mathrm{PM}}{\mathrm{RT}}$
$-d P=\frac{2 P M}{R T} \cdot g \cdot d x$
$-\int_{P_{0}}^{P_{0}} d P / P=\frac{2 M g}{R T} \int_{0}^{x=H / 2} d x$
$\ln \frac{P_{0}}{P_{0}{ }^{\prime}}=\frac{2 M g}{R T} \cdot \frac{H}{2} \Rightarrow \frac{P_{0}}{P_{0}^{\prime}}=e^{M g H / R T}$
Q. 2
(D)

For an ideal gas
$\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$
If $\quad C_{P}-C_{V}=1.09 R$.
or $p_{A}>p_{B} T_{A}<T_{B}$
Then gas will be real. Thus pressure is high and temperature is low for real gas.
Q. 3 (D)
$\mathrm{C}_{\mathrm{P}}=3.5 \mathrm{R}$ (At STP)
As temperature increases, vibrational degree of freedom becomes 2 at higher temperature.
$\mathrm{C}_{\mathrm{P}}=\frac{9}{2} \mathrm{R}=4.5 \mathrm{R}$
Q. 4 (B)

Average velocity will be same for same temperature.
(D)

Work done by gas $=$ Area under P-V diagram
$=\frac{\pi(4-3)(4-2)}{2}+\frac{\pi(2-1)(3-2.5)}{2}$
$=\frac{2.5 \pi}{2}=\frac{5 \pi}{4} \operatorname{atm} \mathrm{~L}$
$\mathrm{W}=-\left(\frac{5 \pi}{4}\right)$ atm L (Work done by gas is negative as cycle is anticlockwise)
Q. 6
(D)
$\left(\mathrm{p}_{0}, \mathrm{v}_{0}\right) \rightarrow\left(\mathrm{p}_{0}, 2 \mathrm{v}_{0}\right)$
$\Delta \mathrm{U}_{1}=\frac{3}{2} \mathrm{nR} \Delta \mathrm{T} ; \Delta \mathrm{U}_{2}=\frac{5}{2} \mathrm{nR} \Delta \mathrm{T}$
$\Delta \mathrm{U}_{2}>\Delta \mathrm{U}_{1} ; \Delta \mathrm{W}_{1}=\Delta \mathrm{W}_{2}$
$\Delta \mathrm{Q}_{1}-\Delta \mathrm{Q}_{2}=\Delta \mathrm{U}_{1}-\Delta \mathrm{U}_{2}$
$\Delta \mathrm{U}_{2}+\Delta \mathrm{W}_{2}>\Delta \mathrm{U}_{1}+\Delta \mathrm{W}_{1}$
Q. 7 (C)

From the graph shown the equation of line is
$P-P_{0}=\left(\frac{\frac{P_{0}}{2}-P_{0}}{2 V_{0}-V_{0}}\right)\left(V-V_{0}\right)$
$\mathrm{P}-\mathrm{P}_{0}=\frac{-\mathrm{P}_{0}}{2 \mathrm{~V}_{0}}\left(\mathrm{~V}-\mathrm{V}_{0}\right)$
$P=\frac{-P_{0} V}{2 V_{0}}+\frac{3 P_{0}}{2}$
Now we know $\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow\left(\frac{3}{2} \mathrm{P}_{0}-\frac{\mathrm{P}_{0} \mathrm{~V}}{2 \mathrm{~V}_{0}}\right) \mathrm{V}=\mathrm{nRT}$
For maximum temperature

$$
\begin{aligned}
& \frac{d T}{d V}=0 \Rightarrow \frac{3}{2} P_{0}-\frac{P_{0} V}{V_{0}}=0 \\
& V=\frac{3}{2} V_{0} \\
& T_{\max }=\left(\frac{3}{2} P_{0}-\frac{P_{0}}{2 V_{0}} \cdot \frac{3}{2} V_{0}\right) \frac{3}{2} V_{0} \cdot \frac{1}{n R} \\
& =\frac{3}{4} P_{0} \cdot \frac{3}{2} V_{0} \cdot \frac{1}{R}=\frac{9 P_{0} V_{0}}{8 R}
\end{aligned}
$$

Q. 8
 (B)

Initially

$$
P V_{1}=\frac{12}{M} R T_{1}
$$

or $\quad \mathrm{P}\left(4 \times 10^{-3}\right)=\frac{12}{\mathrm{M}} \mathrm{R}(273+7)$

$$
\begin{align*}
& \rho=\frac{m}{V_{2}}=\frac{12}{V_{2}}=6 \times 10^{-4} \mathrm{gm} / \mathrm{cc} \tag{1}\\
& P\left(\frac{12}{6 \times 10^{-4}}\right) \times\left(10^{-2}\right)^{3}=\frac{12}{M} R(T) \tag{2}
\end{align*}
$$

from $1 \div 2$

$$
\frac{4 \times 10^{-3}}{12 \times 10^{-6}} \times 6 \times 10^{-4}=\frac{273+7}{\mathrm{~T}} \Rightarrow \mathrm{~T}=1400 \mathrm{~K}
$$

Q. 9 (D)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{Q}$
$2 \mathrm{C} \Delta \mathrm{T}=\mathrm{n} \frac{\mathrm{f}}{2} \mathrm{R} \Delta \mathrm{T}+\mathrm{PdV}$
$2 C \Delta T=2 \times \frac{5}{2} R \Delta T+P d V$
$\frac{\mathrm{PT}^{2}}{\mathrm{~V}}=\mathrm{K}$
or $\frac{T^{3}}{V^{2}}=\frac{K}{n R} \Rightarrow T^{3}=\frac{K}{n R} V^{2}$
$\Rightarrow 3 \mathrm{~T}^{2} \mathrm{dT}=\frac{\mathrm{K}}{\mathrm{nR}} 2 \mathrm{VdV}$
or $\frac{3 \mathrm{~T}^{2}}{2 \mathrm{~V}} \mathrm{dT}=\frac{\mathrm{K}}{\mathrm{nR}} \mathrm{dV}$
$\frac{3}{2} \mathrm{dT}=\frac{\mathrm{P}}{\mathrm{nR}} \mathrm{dV}$

From (1) and (2)
$2 \mathrm{C} \Delta \mathrm{T}=5 \mathrm{R} \Delta \mathrm{T}+\mathrm{nR} \frac{3}{2} \mathrm{dT}$
$2 \mathrm{C}=5 \mathrm{R}+3 \mathrm{R}$
$2 \mathrm{C}=8 \mathrm{R}$
So, molar heat capacity $\mathrm{C}=4 \mathrm{R}$
Q. 10 (B)
$\Delta \mathrm{U}=\mathrm{n} \frac{\mathrm{f}}{2} \mathrm{R} \quad \Delta \mathrm{T}$
For Isobaric process $\mathrm{V}_{1} \rightarrow \mathrm{~T}_{1}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{nR}}$
At $V_{2} \rightarrow T_{2}=\frac{P_{1}\left(V_{1} / 2\right)}{n R}=\frac{T_{1}}{2}$
$\Rightarrow \quad \Delta \mathrm{U}_{\mathrm{P}}=\frac{\mathrm{nfR}}{2}\left[\frac{\mathrm{~T}_{1}}{2}\right]$
Isothermal $\quad \Delta \mathrm{U}_{\mathrm{T}}=0$ \qquad
Adiabatic $\quad \mathrm{PV}^{\gamma}=\mathrm{K}$
$\mathrm{TV}^{\gamma-1}=\mathrm{K}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{V}_{2}^{\gamma-1}}{\mathrm{~V}_{1}^{\gamma-1}}=\frac{1}{2^{\gamma-1}}$
$T_{2}=2^{\gamma-1} \mathrm{~T}_{1}>\frac{\mathrm{T}_{1}}{2}$
$\Delta U_{\text {Adiabatic }}=n \frac{F}{2} R\left[2^{\gamma-1}\right] \frac{T_{1}}{2}$
$\Delta \mathrm{U}_{\text {adiabatic }}=\Delta \mathrm{U}_{\mathrm{p}}\left(2^{\gamma-1}\right)$
Q. 11 (A)

For larger n, pressure will be smaller, so work done will be smaller for larger n .
Q. 12 (B)
$\mathrm{V}=\mathrm{kT}^{2 / 3}$
$\mathrm{dV}=\frac{2}{3} \mathrm{k} \mathrm{T}^{-\frac{1}{3}} \mathrm{dT}$
$W=\int P d V=\int \frac{n R T}{V} d V$
$=R \int \frac{T}{V} d V=R \frac{2}{3} \int \frac{T K T^{-\frac{1}{3}} d T}{K T^{\frac{2}{3}}}=\frac{2}{3} R\left(T_{2}-T_{1}\right)$
$=\frac{2}{3} R(30)=20(8.31)=166.2 \mathrm{~J}$

Q. 13 (C)
 $\mathrm{VP}^{\mathrm{n}}=$ constant.
 $\mathrm{dV} \mathrm{P}^{\mathrm{n}}+\mathrm{VnP}^{\mathrm{n}-1} \mathrm{dP}=0$

$-\frac{\mathrm{VdP}}{\mathrm{dV}}=\frac{\mathrm{P}}{\mathrm{n}}=$ bulk modulus
Q. 14 (C)
$\mathrm{V}=\mathrm{k}\left(\frac{\mathrm{nRT}}{\mathrm{VT}}\right)^{0.33}$
$\mathrm{V}^{1.33}=$ const
$\mathrm{V}=$ const
\therefore proceses is isochoric
Q. 15 (A)

Correct graph is shown in option (A)
Process 1-2 adiabatic process, Process 2-3 Isochoric process, process 3-1 Isothermal process.

Q. 16 (A)

For adiabatic process
$\mathrm{PV}_{1}{ }^{\gamma}=\mathrm{P}_{\mathrm{A}} \mathrm{V}_{2}{ }^{\gamma}$
$P_{A}=P\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}$
For isothermal process
$P V_{1}=P_{B} V_{2}$
$P_{B}=P \frac{V_{1}}{V_{2}}$
From (1) and (2)
$\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}\left[\right.$ For expansion $\mathrm{V}_{2}>\mathrm{V}_{1}$]
and by PV = nRT
$\mathrm{T}_{\mathrm{A}}<\mathrm{T}_{\mathrm{B}}$
Q. 17 (A)
($\mathrm{P}=$ constant)
$\frac{\Delta Q}{\Delta W}=\frac{n C_{P} \Delta T}{n R \Delta T}=\frac{C_{P}}{R}=\frac{5}{2}$

Q. 18 (D)

Process AB is isobaric [$\mathrm{V} \alpha \mathrm{T}$]
$\begin{array}{ll}\mathrm{T}_{\mathrm{B}}>\mathrm{T}_{\mathrm{A}} \\ \therefore & \mathrm{U}_{\mathrm{B}}>\mathrm{U}_{\mathrm{A}} \\ \mathrm{W} & \end{array}$
$\mathrm{W}_{\mathrm{BC}}<\mathrm{W}_{\mathrm{AB}}$ (Area under P-V curve)
Q. 19 (A)
$\mathrm{dW}=\mathrm{dQ}-\mathrm{dU}$
$\mathrm{dW}=\mathrm{nCdT}-\mathrm{nC}_{\mathrm{v}} \mathrm{dT}$
$W=\int C d T-\int C_{V} d T$
$=\int \frac{\mathrm{a}}{\mathrm{T}} \mathrm{dT}-\mathrm{C}_{\mathrm{v}} \Delta \mathrm{T}$
$=a \ln \left(\frac{\eta T_{0}}{T_{0}}\right)-\frac{\left(T_{2}-T_{1}\right) R}{\gamma-1}$

$$
\mathrm{W}=a \ln \eta \frac{-(\eta-1) \mathrm{T}_{0} R}{\gamma-1}
$$

Q. 20 (A)

$$
\begin{aligned}
& \mathrm{T}=\mathrm{T}_{0}+\mathrm{aV}^{3} \\
& \Rightarrow \frac{\mathrm{PV}}{\mathrm{nR}}=\mathrm{T}_{0}+\mathrm{aV}^{3} \\
& \Rightarrow \mathrm{P}=\mathrm{nR}\left[\frac{\mathrm{~T}_{0}}{\mathrm{~V}}+\mathrm{aV}^{2}\right]
\end{aligned}
$$

For minimum $P, \frac{d P}{d V}=O$

$$
\Rightarrow \frac{-\mathrm{T}_{0}}{\mathrm{~V}^{2}}+\mathrm{a} 2 \mathrm{~V}=0 \Rightarrow \mathrm{~V}=\left(\frac{\mathrm{T}_{0}}{2 \mathrm{a}}\right)^{\frac{1}{3}}
$$

Q. 21 (D)

$$
\begin{aligned}
& P=R\left[\frac{T_{0}}{V}+a V^{2}\right] \text { and } \quad V=\left(\frac{T_{0}}{2 a}\right)^{\frac{1}{3}} \\
& \Rightarrow P=\frac{3}{2}\left(a^{\frac{1}{3}} R T_{0} \frac{2}{3}\right) 2^{\frac{1}{3}}
\end{aligned}
$$

Q. 22 (D)

Process $_{1 \rightarrow 2}$ and Process ${ }_{3 \rightarrow 4}$ are isochoric process.
$\mathrm{W}_{12}=0$
$\mathrm{W}_{34}=0$
$\mathrm{W}_{23}=\mathrm{nR}\left(\mathrm{T}_{3}-\mathrm{T}_{2}\right)$
$=3 R(2400-800)=4800 R$
$\mathrm{W}_{41}=\mathrm{nR}\left(\mathrm{T}_{1}-\mathrm{T}_{4}\right)$
$=3 R(400-1200)=-2400 R$
$\mathrm{W}=(4800-2400) \mathrm{R}=2400 \mathrm{R}$

$$
=20 \mathrm{~kJ}
$$

Q. 23 (D)

$$
\begin{aligned}
& \frac{\mathrm{V}_{\text {sound }}}{\mathrm{V}_{\mathrm{rms}}}=\frac{\sqrt{\frac{\gamma \mathrm{P}}{\rho}}}{\sqrt{\frac{3 \mathrm{P}}{\rho}}}=\sqrt{\frac{5}{9}} \Rightarrow \gamma=\frac{5}{3} \text { [Monoatomic gas] } \\
& \mathrm{PT}=\text { const } \\
& \mathrm{P}^{2} \mathrm{~V}=\text { const } \Rightarrow \mathrm{PV}^{1 / 2}=\mathrm{const} \\
& \Rightarrow \mathrm{x}=\frac{1}{2} \Rightarrow \mathrm{C}=\mathrm{C}_{\mathrm{V}}+\frac{\mathrm{R}}{1-\mathrm{x}}=\frac{3}{2} \mathrm{R}+2 \mathrm{R}=\frac{7 \mathrm{R}}{2}
\end{aligned}
$$

Q. 24 (C)

Q. 25 (D)
$\mathrm{V}_{\mathrm{f}}=\eta \mathrm{v}_{0}$
$\mathrm{W}_{\text {gas }}=\mathrm{RT}_{0} \ell \mathrm{n} \eta$
$\mathrm{W}_{\mathrm{atm}}=\mathrm{pdv}=\mathrm{pv}(\eta-1)=\mathrm{RT}_{0}(\eta-1)$
At constant temperature $\Delta \mathrm{U}=0$
Q. 26 (A)
$\mathrm{PV}=\mathrm{nRT}$ Along $\mathrm{AB} \quad \mathrm{V} \downarrow \mathrm{T} \downarrow$
Along BC $\quad \mathrm{P} \uparrow \mathrm{T} \uparrow$
Along $\mathrm{CA} \frac{\mathrm{p}}{(1 / \mathrm{v})}=$ const $\mathrm{U}=\mathrm{const}$
$\mathrm{w}=\int \mathrm{Pdv}=\int \frac{\mathrm{kdv}}{\mathrm{v}}=\mathrm{k} \ell \mathrm{n}\left(\mathrm{v}_{\mathrm{i}} / \mathrm{v}_{\mathrm{f}}\right)=-\mathrm{ve}$
Q. 27 (B)
$\frac{\mathrm{P}}{\mathrm{V}}=\frac{\mathrm{nRT}}{\mathrm{V}^{2}}$
so $\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\mathrm{kv}_{1}^{2}}{\mathrm{kv}_{2}^{2}}=\frac{1}{4} \Rightarrow \mathrm{~T}_{2}=1200 \mathrm{~K}$
$\Delta \mathrm{T}=1200-300=900 \mathrm{~K}$
$\Delta \mathrm{U}=2 \times 3 / 2 \mathrm{R} \times 900=2700 \mathrm{R}$

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
Q. 1 (C,D)

By energy conservation, energy loss by one molecule is equal to gain by other.
Q. $2(\mathrm{~A}, \mathrm{~B})$
$\overrightarrow{\mathrm{P}}=\mathrm{M} \overrightarrow{\mathrm{V}}_{\mathrm{av}}$, As $\overrightarrow{\mathrm{V}}_{\mathrm{av}}=0$ (in equilibrium)
$\therefore \quad \vec{P}_{\mathrm{av}}=0$
Q. 3 (A,B,C)

Avg. momentum $/ \mathrm{mol} \propto \sum \mathrm{V}_{\mathrm{x}}{ }^{2}$
$\sum \mathrm{V}_{\mathrm{x}}{ }^{2}$ is sameat NTP
(K.E. $)_{\text {avg }} \propto T$
(K.E.)/vol. \propto T
(B,D)
$\mathrm{v}_{\mathrm{ms}}=1.73 \sqrt{\frac{\mathrm{KT}}{\mathrm{m}}}$
so $\mathrm{v}_{\mathrm{rms}}$ does not change
$\frac{\mathrm{P}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{n}_{2}} \Rightarrow \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{1}{2}$
Q. 5 (A,B)
$\Delta \mathrm{Q}=\frac{\mathrm{f}}{2} \mathrm{nR} \Delta \mathrm{T}$
$\mathrm{f}=\frac{2 \times 3 \times 4.2}{1 \times 8.3 \times 1}$
$\left\{\begin{array}{l}\mathrm{n}=1 \\ \mathrm{R}=8.3\end{array}\right.$
$\Delta \mathrm{T}=1$
$=\frac{6 \times 4.2}{8.3} \cong 3$
The gas must be monoatomic.
(A,D)
$\mathrm{n}_{1}=\frac{7}{28} ; \quad \mathrm{n}_{2}=\frac{11}{44}$
So $\mathrm{n}_{1}+\mathrm{n}_{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\mathrm{m}_{0}=\frac{18 \mathrm{~kg}}{(1 / 2)}=36 \mathrm{~kg}$
$C_{V \text { mix }}=\frac{\frac{1}{4} \times \frac{5}{2} R+\frac{1}{4} \times 3 R}{\frac{1}{4}+\frac{1}{4}}=\frac{11}{4} R$
$C_{P \text { mix }}=\frac{11}{4} R+R=\frac{15}{4} R$
$\mathrm{r}=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}=\frac{15}{11}=\frac{45}{33} \cong \frac{47}{35}$
Q. 7 (A,B,C,D)

Specific heat of a substance can be finite, infinite, zero and negative.
Q. 8 (A,B)
$\mathrm{C}_{\mathrm{P}}>\mathrm{C}_{\mathrm{V}}$
and $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=2$
\therefore option A and B is correct.
Q. 9 (A, B, D)
$\mathrm{T}=\frac{\mathrm{PV}}{\mathrm{nR}}$
$\therefore \quad$ initial and final temperature are equal
as $\mathrm{U}=\frac{\mathrm{nf} \mathrm{RT}}{2}$
$\therefore \quad \mathrm{U}_{\text {initial }}=\mathrm{U}_{\text {final }}$.
Also the net work done by an ideal gas in the process may be zero.
Q. 10 (A,D)

For equilibrium of piston

$\mathrm{PS}=\mathrm{Kx}_{0}$
$\mathrm{P}=\frac{\mathrm{Kx} x_{0}}{\mathrm{~S}}$
For piston
$\mathrm{W}_{\mathrm{all}}=\mathrm{KE}_{2}-\mathrm{KE}_{1}$
$\mathrm{W}_{\mathrm{gas}}-\frac{1}{2} \mathrm{kx}^{2}=\frac{1}{2} \mathrm{mv}^{2}$
$\mathrm{W}_{\mathrm{gas}}=\frac{1}{2} \mathrm{kx}^{2}+\frac{1}{2} \mathrm{mv}^{2}=$ positive
$\Delta \mathrm{Q}=0$
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\Delta \mathrm{U}=-\mathrm{W}=$ negative
As internal energy of gas decreases
\therefore temperature of gas decreases.

Q. 11 (A,B,C,D)

For any process $\Delta \mathrm{U}=\mathrm{n}_{\mathrm{v}} \Delta \mathrm{T}$,
For Isothermal $\Delta T=0$
or $\mathrm{U}=\mathrm{constant}$
$\Delta \mathrm{Q}=0$ (For adiabatic process)

$$
\begin{aligned}
\therefore & \Delta \mathrm{U}+\mathrm{W}=0 \\
& \Delta \mathrm{U}=-\mathrm{W}
\end{aligned}
$$

Q. 12 (A,D)

$$
\begin{aligned}
& \frac{P^{2}}{\rho}=C \Rightarrow \frac{P_{1}^{2}}{\rho_{1}}=\frac{P_{2}^{2}}{\rho_{2}} \\
& \Rightarrow P_{2}^{2}=P^{2} \times \frac{1}{2} \Rightarrow P_{2}=\frac{P}{\sqrt{2}} \\
& P V=\frac{m}{W} \times R T=\frac{\rho V}{W} R T \\
& P=\rho T \frac{R}{W} \Rightarrow P_{1}=\rho_{1} T_{1} R / W \\
& P_{2}=\rho_{2} T_{2} R / W \\
& \frac{P_{1}}{P_{2}}=\frac{\rho_{1} T_{1}}{\rho_{2} T_{2}} \Rightarrow \sqrt{2}=2 \frac{T}{T_{2}} \\
& \Rightarrow T_{2}=\sqrt{2} T \\
& \Rightarrow P=\rho \frac{T R}{W} \Rightarrow \frac{P^{2}}{\rho}=\frac{P T R}{W}=C \\
& \Rightarrow P \propto \frac{1}{T}
\end{aligned}
$$

Q. 13 (C,D)

As the process is carried out suddenly it may be adiabatic and as the conductivity is good enough then may be isothermal.
Q. 14 (C,D)

In adiabatic process
$\Delta \mathrm{U} \neq 0$
$\Delta \mathrm{T} \neq 0$
$\mathrm{PV}^{\gamma}=$ constant

Q. 15 (B,D)

$\Delta \mathrm{W}_{\mathrm{A}}=\mathrm{P}_{1} \Delta \mathrm{~V}$
$\Delta W_{D}=P_{2} \Delta V\left\{\mathrm{P}_{1}>\mathrm{P}_{2}\right\}$
$\Delta \mathrm{Q}_{\mathrm{A}}=\Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{W}_{\mathrm{A}}$
$\Delta \mathrm{Q}_{\mathrm{D}}=\Delta \mathrm{U}_{\mathrm{D}}+\Delta \mathrm{W}_{\mathrm{D}}$
$\Delta \mathrm{Q}_{\mathrm{A}}-\Delta \mathrm{Q}_{\mathrm{D}}=\Delta \mathrm{U}_{\mathrm{A}}-\Delta \mathrm{U}_{\mathrm{D}}+\Delta \mathrm{W}_{\mathrm{A}}-\Delta \mathrm{W}_{\mathrm{D}}$
$\Delta \mathrm{Q}_{\mathrm{A}}-\Delta \mathrm{Q}_{\mathrm{D}}=\Delta \mathrm{W}_{\mathrm{A}}-\Delta \mathrm{W}_{\mathrm{D}}$
$\left\{\therefore \Delta \mathrm{U}_{\mathrm{A}}=\Delta \mathrm{U}_{\mathrm{D}}\right.$
$Q_{A}>Q_{D}$
$\mathrm{W}_{\mathrm{B}}=\mathrm{PdV}=\int_{\mathrm{v}_{1}}^{\mathrm{v}_{2}} \frac{\mathrm{k}}{\mathrm{V}} \mathrm{dv}=\mathrm{k} \ell \mathrm{n} \frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
$\mathrm{W}_{\mathrm{C}}=\mathrm{k} \ell \mathrm{n} \frac{\mathrm{V}_{2}}{\mathrm{v}_{1}}$
hence $W_{B}-W_{C}=0 \Rightarrow Q_{B}>Q_{C}$
$Q_{A}>Q_{B}>Q_{C}>Q_{D}$

Q. 16 (B,D)

in cyclic process.
$\Delta \mathrm{U}=0$
$\Delta \mathrm{Q}=\Delta \mathrm{W}$ as $\Delta \mathrm{W}=+\mathrm{ve}$
$\therefore \quad \Delta \mathrm{Q}=+\mathrm{ve}$
or Net heat energy has been supplied to the system. in process CA

$$
\Delta \mathrm{W}=0
$$

$\Delta \mathrm{U}=-\mathrm{ve}$ (As
$\mathrm{T}=$ decreases)
\therefore heat energy is rejected out by system
Teperature at C is maximum
Q. 17 (C,D)
$\Delta \mathrm{U}=\Delta \mathrm{Q}-\Delta \mathrm{W}$ is same in both methods as it is a state function
Q. 18 (A,C)
in cyclic process $\Delta \mathrm{U}_{1}+\Delta \mathrm{U}_{2}=0$
$\Delta \mathrm{U}_{\mathrm{Net}}=0$
$\Delta \mathrm{Q}-\Delta \mathrm{W}=0$
Q. 19 (A,B)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W} \Rightarrow 25=\frac{\mathrm{nfR} \Delta \mathrm{T}}{2}+0$
$25=\frac{1 \times f \times 25 \times 2}{2 \times 3}$
$\mathrm{f}=3$ (monoatomic)
Q. 20 (A,B)

A \rightarrow B constant pressure
$\mathrm{B} \rightarrow \mathrm{C}$ T $=$ constant
$\mathrm{C} \rightarrow \mathrm{D}$ constant Volume
$\mathrm{D} \rightarrow \mathrm{AT}=$ constant
\therefore clearly, option A and B are constant
Q. 21 (A,C)
$\mathrm{W}=\mathrm{PdV}$. then $\mathrm{W}=-\mathrm{ve}$
As pressure and volume both decreases
\therefore temperature of system decreases

Q. 22 (C,D)

From information, the process may be very nearly adibatic. Hence option (C) is correct.
Q. 23 (C,D)
$\Delta \mathrm{U}=0$
(Adiabatic)
$\mathrm{U}=$ const
$\mathrm{nC}_{\mathrm{v}} \mathrm{T}=$ const
As O_{2} and N_{2} are diatomic, so there temp are equal but
is different from He
For adiabatic $\mathrm{PV}^{\gamma}=$ const
For $\mathrm{O}_{2}, \mathrm{~N}_{2}$ value of γ is same
\therefore pressure of $\mathrm{O}_{2}, \mathrm{~N}_{2}$ remains same but different from He
Q. 24 (B,C)

Slope of $x>$ slope of y
During expansion

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{y}}>\mathrm{W}_{\mathrm{x}} \\
& \mathrm{U}_{\mathrm{y}}>\mathrm{U}_{\mathrm{x}} \Rightarrow \mathrm{C}_{\mathrm{v}_{2}}>\mathrm{C}_{\mathrm{v}_{1}} \\
& \mathrm{f}_{2}>\mathrm{f}_{1}
\end{aligned}
$$

Q. 25 (A,B,D)
$\eta=\frac{0 / P}{I / P}=\frac{W}{Q_{1}}=\frac{Q_{1}-Q_{2}}{Q_{1}}$
$\eta=1-\frac{Q_{2}}{Q_{1}}$.
Q. 26 (C)

Heat given : $\Delta \mathrm{Q}=\mathrm{n}_{1} \mathrm{C}_{\mathrm{V}_{1}} \Delta \mathrm{~T} \rightarrow$ For gas $\mathrm{A} \quad[\mathrm{As} \mathrm{V}=$ constant $\therefore \mathrm{dW}=0$]
$\&$ for Gas $B-\Delta Q=\mathrm{n}_{2} \mathrm{C}_{\mathrm{V}_{2}} \Delta \mathrm{~T}$
(\because For same heat given, temperature rises by same value for both the gases.)
$\Rightarrow \mathrm{n}_{1} \mathrm{C}_{\mathrm{V}_{1}}=\mathrm{n}_{2} \mathrm{C}_{\mathrm{V}_{2}}$
................(1)
Also, $\left(\Delta \mathrm{P}_{\mathrm{B}}\right) \mathrm{V}=\mathrm{n}_{2} \mathrm{R} \Delta \mathrm{T}$ and $\left(\Delta \mathrm{P}_{\mathrm{A}}\right) \mathrm{V}=\mathrm{n}_{1} \mathrm{R} \Delta \mathrm{T}$
$\Rightarrow \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\Delta \mathrm{P}_{\mathrm{A}}}{\Delta \mathrm{P}_{\mathrm{B}}}=\frac{2.5}{1.5}=\frac{5}{3}$
$\Rightarrow \mathrm{n}_{1}=\frac{5}{3} \mathrm{n}_{2}$
Substituting in (1)

$$
\begin{aligned}
& \frac{5}{3} n_{2} C_{V_{1}}=n_{2} C_{v_{2}} \\
\Rightarrow & \frac{C_{\mathrm{v}_{2}}}{C_{\mathrm{v}_{1}}}=\frac{5}{3}=\frac{\left(\frac{5}{2} R\right)}{\left(\frac{3}{2} R\right)}
\end{aligned}
$$

Hence, Gas B is diatomic and Gas A is monoatomic.
Q. 27 (D)

Since $\mathrm{n}_{1}=\frac{5}{3} \mathrm{n}_{2}$ Therefore $\frac{125}{\mathrm{M}_{\mathrm{A}}}=\frac{5}{3}\left(\frac{60}{\mathrm{M}_{\mathrm{B}}}\right)$
(From experiment 1: $\mathrm{W}_{\mathrm{A}}=125 \mathrm{gm} \& \mathrm{w}_{\mathrm{B}}=60 \mathrm{gm}$)
$\Rightarrow 5 \mathrm{M}_{\mathrm{B}}=4 \mathrm{M}_{\mathrm{A}}$
The above relation holds for the pair-Gas A : Ar and Gas B: O_{2}.
(B)

No. of molecules in 'A' $=\mathrm{nN}_{\mathrm{A}}$
$=\frac{125}{40} \mathrm{~N}_{\mathrm{A}}=3.125 \mathrm{~N}_{\mathrm{A}}$
$\left(\right.$ Since $\mathrm{n}=\frac{125}{40}$ for Ar$)$
Q. 29 (C)

Internal energy at any temperature T
$=\mathrm{nC}_{\mathrm{v}} \mathrm{T}$
$=\left(\frac{125}{40}\right)\left(\frac{3 R}{2}\right)(300)$
$\left[\because \mathrm{C}_{\mathrm{V}}\right.$ for mono atomic gas $\left.=\frac{3 \mathrm{R}}{2}\right]$
$\Rightarrow \quad \mathrm{U}_{\mathrm{i}}=2812.5 \mathrm{cal}$.
Q. 30 (B)

Let initial temperature and volume be T_{0} and V_{0}. Since the process is adiabatic, the final temperature and volume is $\mathrm{TV}^{\gamma-1}=\mathrm{T}_{0} \mathrm{~V}_{0}{ }^{\gamma-1}$
($\gamma=\frac{5}{3}$ for mono atomic gas)
$\therefore \quad \mathrm{T}=\mathrm{T}_{0}\left(\frac{\mathrm{~V}_{0}}{\mathrm{~V}_{0} / 8}\right)^{\frac{2}{3}}=4 \mathrm{~T}_{0}$
\therefore percentage increase in temperature of gas is

$$
\frac{\Delta \mathrm{T}}{\mathrm{~T}_{0}} \times 100=\frac{3 \mathrm{~T}_{0}}{\mathrm{~T}_{0}} \times 100=300 \%
$$

Q. 31 (C)

Adiabatic Bulk modulus $\mathrm{B}=-\mathrm{V} \frac{\mathrm{dP}}{\mathrm{dV}}=\gamma \mathrm{P}=\gamma \frac{\mathrm{nRT}}{\mathrm{V}}$

$$
\therefore \quad \frac{B_{i}}{B_{f}}=\frac{T_{0}}{V_{0}} \times \frac{V}{T}=\frac{T_{0}}{V_{0}} \times \frac{V_{0} / 8}{4 T_{0}}=\frac{1}{32}
$$

Q. 32 (B)

For adiabatic process $\mathrm{dQ}=0$
$\therefore d U+d W=0$ or $\frac{d W}{d U}=-1$

Q. 33 (A)

In free expansion, temperature of the gas remains constant, therefore
$\mathrm{p}_{0} \mathrm{v}_{0}=\mathrm{p} .3 \mathrm{v}_{0}$
where $v_{0}=$ initial volume.

$$
\mathrm{p}=\frac{\mathrm{p}_{0}}{3}
$$

Q. 34 (A)

For adiabatic compression, initial conditions are $\frac{p_{0}}{3}$ and $3 \mathrm{v}_{0}$. Final volume and pressure arev_{0} and $3^{2 / 3} \mathrm{p}_{0}$.
$\frac{\mathrm{p}_{0}}{3} \cdot\left(3 \mathrm{v}_{0}\right)^{\gamma}=3^{2 / 3} \mathrm{p}_{0}\left(\mathrm{v}_{0}\right)^{\gamma} \Rightarrow 3^{\gamma-1}=3^{2 / 3}$
or $\quad \gamma-1=\frac{2}{3} \Rightarrow \gamma=\frac{5}{3}$
i.e. gas is monoatomic
Q. 35 (B)
$\mathrm{KE}_{\text {avg }} \propto \mathrm{T}$
Applying $\mathrm{TV}^{\gamma-1}=\mathrm{K}$ for adiabatic process -
$\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma-1}=\mathrm{T}_{2} \mathrm{~V}_{2}^{\gamma-1}$
$\frac{T_{2}}{T_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=\left(\frac{3 \mathrm{v}_{0}}{\mathrm{~V}_{0}}\right)^{5 / 3-1}=3^{2 / 3}$
Q. 36 (A) p,r,s (B) q (C) p,r,s (D) q,r
(A) If $\mathrm{P}=2 \mathrm{~V}^{2}$, from an ideal gas equation $\mathrm{PV}=\mathrm{nRT}$ we get

$$
2 \mathrm{~V}^{3}=\mathrm{nRT}
$$

\therefore with increase in volume
(i) Temperature increases implies $\mathrm{dU}=+\mathrm{ve}$
(ii) $\mathrm{dW}=+\mathrm{ve}$

Hence $d Q=d U+d W=+v e$
(B) If $\mathrm{PV}^{2}=$ constant, from an ideal gas equation $\mathrm{PV}=$ nRT we get $\mathrm{VT}=\mathrm{K}$ (constant)
Hence with increase in volume, temperature decreases
Now $d Q=d U+P d V=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}-\frac{P V}{T} d T[\because d V=-$
$\left.\frac{\mathrm{V}}{\mathrm{T}} \mathrm{dT}\right]$

$$
=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}-\frac{\mathrm{PV}}{\mathrm{~T}} \mathrm{dT}=\mathrm{n}\left(\mathrm{C}_{\mathrm{v}}-\mathrm{R}\right) \mathrm{dT}
$$

$\therefore \quad$ with increase in volume $\mathrm{dT}=-$ ve and since $\mathrm{C}_{\mathrm{v}}>\mathrm{R}$ for monoatomic gas. Hence $\mathrm{dQ}=-\mathrm{ve}$ with increases in temperature $\mathrm{dV}=-\mathrm{ve}$,
$\therefore \mathrm{W}=-\mathrm{ve}$
(C) $\mathrm{dQ}=\mathrm{nC} \mathrm{dT}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}+\mathrm{PdV}$
$\Rightarrow \mathrm{n}\left(\mathrm{C}_{\mathrm{v}}+2 \mathrm{R}\right) \mathrm{dT}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}+\mathrm{PdV}$
$\therefore \quad 2 \mathrm{nRdT}=\operatorname{PdV} \quad \therefore \frac{\mathrm{dV}}{\mathrm{dT}}=+\mathrm{ve}$
Hence with increase in temperature volume increases and vice versa.
$\therefore \quad \mathrm{dQ}=\mathrm{dU}+\mathrm{dW}=+\mathrm{ve}$
(D) $\mathrm{dQ}=\mathrm{nC} \mathrm{dT}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}+\mathrm{PdV}$
or $\mathrm{n}\left(\mathrm{C}_{\mathrm{v}}-2 \mathrm{R}\right) \mathrm{dT}=\mathrm{nC}_{\mathrm{v}} \mathrm{dT}+\mathrm{PdV}$
or $-2 \mathrm{nRdT}=\mathrm{PdV}$
$\therefore \frac{\mathrm{dV}}{\mathrm{dT}}=-\mathrm{ve}$
\therefore with increase in volume temperature decreases.
Also $\mathrm{dQ}=\mathrm{n}\left(\mathrm{C}_{\mathrm{v}}-2 \mathrm{R}\right) \mathrm{dT}$
For expantion $\mathrm{dT}=-\mathrm{ve}$ but $\mathrm{C}_{\mathrm{v}}<2 \mathrm{R}$ for monoatomic gas. Therefore $d Q=+v e$
with increase in temperature $\mathrm{dV}=-\mathrm{ve}$,
$\therefore \quad W=-v e$
Q. 37 (A) p, s (B) s (C) p, s (D) q, r
(A) $\mathrm{PV}=\mathrm{nRT}$
$\mathrm{P}=(\mathrm{nRT}) \frac{1}{\mathrm{~V}}=($ constant $) \frac{1}{\mathrm{~V}}, \mathrm{P} \alpha \frac{1}{\mathrm{~V}}$
$\mathrm{T}=$ constant i.e. isothermal process
As $\frac{1}{\mathrm{~V}}$ decreases or V increases
$\therefore \quad \Delta \mathrm{W}=$ positive
and $\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}=\Delta \mathrm{W}>0(\Delta \mathrm{U}=0)$
(B) $\Delta \mathrm{Q}=0$ and $\mathrm{V}=$ increases
$\therefore \quad \Delta \mathrm{W}=$ positive
(C) $\mathrm{PV}=\mathrm{nRT} \quad \mathrm{V} \propto \mathrm{T}(\mathrm{P}=$ constant $)$

As volume increases, T also increases
i.e., $\Delta \mathrm{U}>0$
and $\Delta \mathrm{W}>0$
So $\Delta \mathrm{Q}>0$
(D) For cyclic process $\Delta U=0$
$\Delta \mathrm{W}<0$ (anticlockwise)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}<0$

NUMERICAL VALUE BASED

Q. 1 [435]

Process A \rightarrow B
$W_{A B}=\int P d v=\int \frac{3}{2} \mathrm{~T}^{1 / 2} \mathrm{dv}$
$=\int \frac{3}{2} \mathrm{~T}^{1 / 2} \times \frac{1}{3} \mathrm{RT}^{-1 / 2} \mathrm{dT}$
On solving, $\mathrm{W}_{\mathrm{AB}}=50 \mathrm{R}=50 \times 8.3=415 \mathrm{~J}$
Process $\mathrm{B} \rightarrow \mathrm{C}$

$$
\begin{aligned}
& \mathrm{U}=\frac{1}{2} \mathrm{~V}^{1 / 2} \\
& \frac{3}{2} \mathrm{RT}=\frac{1}{2} \mathrm{~V}^{1 / 2} \\
\Rightarrow \quad & 3 \mathrm{PV}^{1 / 2}=1 \\
\therefore \quad & \mathrm{P}=\frac{1}{3 \sqrt{\mathrm{~V}}}
\end{aligned}
$$

Now $W_{B C}=\int P d v=\int_{100}^{1600} \frac{1}{3 \sqrt{V}} d v=\frac{2}{3} \sqrt{V}$
$=\frac{2}{3}[40-10]=\frac{2}{3} \times 30=20 \mathrm{~J}$
Total $\mathrm{W}=415+20=435$]
Q. 2 [0005]

Temperature is constant

$$
\begin{gathered}
\Rightarrow \quad \Delta \mathrm{E}=0, \mathrm{dW}=\mathrm{nRT} \frac{\mathrm{dv}}{\mathrm{v}}=\mathrm{nRT} \frac{\mathrm{Adx}}{\mathrm{AL} / 2} \\
\\
\Rightarrow \quad \frac{\mathrm{~d}=\Delta \mathrm{E}+\mathrm{W}}{\mathrm{dt}}=\frac{\mathrm{nRT}}{\mathrm{~L} / 2} \frac{\mathrm{dx}}{\mathrm{dt}} \\
\Rightarrow \frac{\mathrm{dQ}}{\mathrm{dt}}=\frac{\mathrm{dW}}{\mathrm{dt}} \\
\Rightarrow \quad \mathrm{k} \frac{1}{900} \frac{\Delta T}{\mathrm{~L}}=\frac{2 \mathrm{nRT}}{\mathrm{~L}}\left(\frac{\mathrm{dx}}{\mathrm{dt}}\right) \\
\Rightarrow \quad \frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{k} \times 27}{900 . \mathrm{nRT}} \\
=\frac{415.5 \times 27 \times 2}{900 \times 0.5 \times 8.31 \times 300}=\frac{1}{200} \mathrm{~m} / \mathrm{s}=5 \mathrm{~mm} / \mathrm{s}
\end{gathered}
$$

Q. 3 [0002]
$Q=7 \mathrm{~J}$

$$
\begin{aligned}
& \Delta \mathrm{Q}=\mathrm{DU}+\mathrm{W} \\
& 7=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T}+\mathrm{PdV} \\
& =\mathrm{n} \frac{5}{2} \mathrm{R} \Delta \mathrm{~T}+\mathrm{nR} \Delta \mathrm{~T} \\
& 7=\frac{7}{2}(\mathrm{nR} \Delta \mathrm{~T}) \Rightarrow \mathrm{nR} \Delta \mathrm{~T}=2 \mathrm{~J}
\end{aligned}
$$

Q. 4 [0075 J]
$\Delta \mathrm{V}=\frac{\mathrm{f}}{2} \mathrm{nR} \Delta \mathrm{T}=\frac{5}{2}\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right)=63 \mathrm{~J}$
$\operatorname{mgx}+\frac{1}{2} \mathrm{kx}^{2}+\mathrm{P}_{0} \mathrm{Ax}=\omega_{\text {gas }}$
$\omega_{\text {gas }}=12 \mathrm{~J}$
$\Rightarrow \Delta \mathrm{Q}=75 \mathrm{~J}$
Q. 5 [2400]

At B and $\mathrm{C} \quad\left(\mathrm{T}_{\mathrm{B}}=\mathrm{T}_{\mathrm{C}}\right)$
$\frac{\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}}{\mathrm{T}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}$
$\frac{\mathrm{P}_{\mathrm{B}} \mathrm{V}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=\frac{\mathrm{P}_{\mathrm{C}} 3 \mathrm{~V}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{C}}}$
$\mathrm{P}_{\mathrm{B}}=3 \mathrm{P}_{\mathrm{C}}$
for line $\mathrm{ACP} \alpha \mathrm{V}$ (straight line through origin)

$$
\begin{align*}
& \text { so } \frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{A}}}=\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{A}}}=\frac{3 \mathrm{~V}_{\mathrm{A}}}{\mathrm{~V}_{\mathrm{A}}} \\
& \Rightarrow \Rightarrow \mathrm{P}_{\mathrm{C}}=3 \mathrm{P}_{\mathrm{A}} \\
& \text { Thus } \quad \begin{array}{l}
\mathrm{P}_{\mathrm{C}}=3 \mathrm{P}_{\mathrm{A}} ; \mathrm{P}_{\mathrm{B}}=3 \mathrm{P}_{\mathrm{c}}=9 \mathrm{P}_{\mathrm{A}} \\
\mathrm{~V}_{\mathrm{C}}=3 \mathrm{~V}_{\mathrm{A}} ; \mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{A}}
\end{array} \tag{I}\\
& \mathrm{~T}_{\mathrm{A}}=\frac{\mathrm{P}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}}{\mathrm{nR}}
\end{align*}
$$

from A to B ; sochoric $\mathrm{P} \uparrow \mathrm{T} \uparrow$
so $T_{B}>T_{A}$
for C to A^{A}; both (P, V) \downarrow so $\mathrm{T} \downarrow$
Thus from B to C (we could have maximum temperature)

$$
\begin{aligned}
& \mathrm{P}=\mathrm{aV}+\mathrm{b} \\
& \Rightarrow \quad \mathrm{P}=-\left(\frac{6 \mathrm{P}_{\mathrm{A}}}{2 \mathrm{~V}_{\mathrm{A}}}\right)+12 \mathrm{P}_{\mathrm{A}} \\
& \Rightarrow \quad \mathrm{P}=-\frac{3 \mathrm{P}_{\mathrm{A}} \mathrm{~V}}{\mathrm{~V}_{\mathrm{A}}}+12 \mathrm{P}_{\mathrm{A}}
\end{aligned}
$$

$$
\mathrm{PV}=\mathrm{nRT}
$$

$$
\left(-\frac{3 \mathrm{P}_{\mathrm{A}} \mathrm{~V}}{\mathrm{~V}_{\mathrm{A}}}+12 \mathrm{P}_{\mathrm{A}}\right) \mathrm{V}=\mathrm{nRT}
$$

$$
\text { for } T_{\max } \frac{\mathrm{dT}}{\mathrm{dV}}=0
$$

$$
\frac{-6 \mathrm{P}_{\mathrm{A}}}{\mathrm{~V}_{\mathrm{A}}} \mathrm{~V}+12 \mathrm{P}_{\mathrm{A}}=0
$$

$$
\mathrm{V}=2 \mathrm{~V}_{\mathrm{A}} \Rightarrow \mathrm{P}=6 \mathrm{P}_{\mathrm{A}}
$$

$$
\mathrm{T}=\frac{6 \mathrm{P}_{\mathrm{A}}\left(2 \mathrm{~V}_{\mathrm{A}}\right)}{\mathrm{nR}}=\frac{12 \mathrm{P}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}}{\mathrm{nR}}
$$

$$
\mathrm{T}_{\max }=12 \mathrm{~T}_{\mathrm{A}}=2400 \mathrm{~K}
$$

$\mathrm{w}=\mathrm{m}_{\mathrm{w}} \mathrm{gh}$

$$
\begin{aligned}
& \mathrm{Q}=\frac{7}{2} \times \mathrm{m}_{\mathrm{w}} \mathrm{gh} \\
&=\frac{7}{2} \times 74 \times 9.8 \times 1.2 \approx 3 \times 10^{3} \mathrm{~J} \\
& \therefore \mathrm{n}=3
\end{aligned}
$$

Q. 7 [1]

$$
F=\frac{P V g}{R T}\left(M_{\text {air }}-M_{g a s}\right)
$$

$$
\frac{\mathrm{F}_{\mathrm{H}_{2}}}{\mathrm{~F}_{\mathrm{He}}}=\frac{\mathrm{M}_{\text {air }}-\mathrm{M}_{\mathrm{H}_{2}}}{\mathrm{M}_{\mathrm{air}}-\mathrm{M}_{\mathrm{He}}}
$$

$$
=1.08
$$

Q. 8 [2]

$$
\frac{\mathrm{d} \theta}{\mathrm{dt}}=\frac{100-0}{\mathrm{R}_{\mathrm{eq}}} ; \mathrm{T}_{\mathrm{B}}=40^{\circ} \mathrm{C}, \mathrm{~T}_{\mathrm{D}}=60^{\circ} \mathrm{C}
$$

Q. 9 [1]
$\frac{40-T}{R_{H} / 2}=\frac{T-20}{R_{H} / 2}+\frac{T-0}{R_{H} / 4}$
$\mathrm{T}=15^{\circ} \mathrm{C}$
$\frac{\mathrm{T}-0}{\mathrm{R}_{\mathrm{H}} / 4}=\mathrm{i}_{\mathrm{H}} \Rightarrow \mathrm{i}_{\mathrm{H}}=6 \mathrm{~J} / \mathrm{s}$
Heat supplied $=6 \times 5.6 \times 10^{4}=3.36 \times 10^{5} \mathrm{~J} \operatorname{In} 5.6 \times 10^{4} \mathrm{~s}$. amount of ice $\mathrm{mL}_{\mathrm{f}}=3.36 \times 10^{5}$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)

After opening of at equilibrium temperature and pressure of whole gas is T_{1} and P_{1}
$\mathrm{n}_{1}=\frac{1 \times \mathrm{V}}{\mathrm{RT}}, \mathrm{n}_{2}=\frac{0.5 \times \mathrm{V} \times 4}{\mathrm{RT}}$
$\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$
$\frac{\mathrm{V}}{\mathrm{RT}}+\frac{\mathrm{V} \times 4}{2 \mathrm{RT}}=\frac{5 \mathrm{VP}_{1}}{\mathrm{RT}}$
$\frac{3 \mathrm{~V}}{\mathrm{RT}}=\frac{5 \mathrm{VP}_{1}}{\mathrm{RT}_{1}}$
$\frac{\mathrm{P}_{1}}{\mathrm{~T}_{1}}=\frac{0.6}{\mathrm{~T}}$
$\Delta \mathrm{Q}=0, \quad \Delta \mathrm{~W}=0$
$\therefore \Delta \mathrm{U}=0$
$\mathrm{n}_{1} \mathrm{C}_{\mathrm{v}} \mathrm{T}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}} \mathrm{T}=\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right) \mathrm{C}_{\mathrm{v}} \mathrm{T}_{1}$
$\mathrm{T}_{1}=\mathrm{T}$
$\frac{P_{1}}{\mathrm{~T}}=\frac{0.6}{\mathrm{~T}}$
$\mathrm{P}_{1}=0.6 \mathrm{~atm}$
Q. 2 (C)
$\mathrm{PV}=\mathrm{N} \times \mathrm{K} \times \mathrm{T}$
where K is Boltzmann constant
$10^{5} \times 100=\mathrm{N} \times 1.38 \times 10^{-23} \times 273$
$\mathrm{N} \approx 3 \times 10^{27}$
Q. 3 (B)

Pressure of gas is app. same everywhere in the vessel
Q. 4 (B)

Mole conservation

$$
\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}
$$

Initial no. of moles $=n_{1}=n_{2}=\frac{n}{2}$
finally when temp of 1 vessel is T \& another is 2 T
$\mathrm{n}_{1}=\frac{\mathrm{PV}}{\mathrm{RT}}$
$\mathrm{n}_{2}=\frac{\mathrm{PV}}{\mathrm{R} 2 \mathrm{~T}} \Rightarrow \frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{2}{1}$
$\mathrm{n}_{1}+\mathrm{n}_{2}=\mathrm{n}$
$\mathrm{n}_{1}=\frac{2 \mathrm{n}}{3} ; \mathrm{n}_{2}=\frac{\mathrm{n}}{3}$
mass of gas $\propto n_{1}$
$\therefore \frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{\frac{\mathrm{n}}{3}}{\frac{\mathrm{n}}{2}}=\frac{2}{3}$
Q. $5 \quad$ (A)
$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{10^{5} \times 1}{\frac{25}{3} \times 300}=40$
$\mathrm{N}=40 \times 6.023 \times 10^{23}=24 \times 10^{24}$
Average sep. $=\left(\frac{1}{\mathrm{n}}\right)^{1 / 3}=1 \mathrm{~nm}$
Q. 6 (A)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{ms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{M}_{0}}} \\
& \mathrm{P}=\mathrm{N} \times 2 \mathrm{mV} \mathrm{~V}_{\mathrm{ms}} \\
& 1.01 \times 10^{5}=\mathrm{N} \times 2 \times 5 \times 10^{-27} \times \mathrm{V}_{\mathrm{ms}} \\
& \mathrm{~N}=\frac{1.01 \times 10^{5} \sqrt{5 \times 10^{-27}}}{2 \times 5 \times 10^{-27} \sqrt{3 \times 1.4 \times 10^{-23} \times 293}} \\
& =6.43 \times 10^{27}
\end{aligned}
$$

Q. 7 (B)
energy conservation

$$
\begin{aligned}
& \frac{f_{1}}{2} n_{1} R T+\frac{f_{2}}{2} n_{2} R T_{2}=\frac{f_{e q}}{2}\left(n_{1}+n_{2}\right) R T \\
& f_{e q}=\frac{f_{1} n_{1}+f_{2} n_{2}}{n_{1}+n_{2}} \\
& \Rightarrow \frac{2}{y_{\text {eq }}-1}=\left(\frac{n_{1}}{n_{1}+n_{2}}\right)\left(\frac{2}{y_{1}-1}\right)+\left(\frac{n_{2}}{n_{1}+n_{2}}\right)\left(\frac{2}{y_{2}-1}\right) \\
& \text { put } \quad n_{1}=1 \text { and } n_{2}=n \\
& \Rightarrow \quad n=2
\end{aligned}
$$

Q. 8 (D)
$\mathrm{PV}=\mathrm{n}_{1} \mathrm{R} 300$ and (4V) (5P) $=\mathrm{n}_{2} \mathrm{R} 400$
\Rightarrow gas will move from high pressure to law pressure means C_{2} to C_{1}
after long time final pressure P_{0}
$\mathrm{P}_{0} \mathrm{~V}=\mathrm{n}_{1}^{\prime} \mathrm{R} 300$ and $\mathrm{P}_{0}(4 \mathrm{~V})=\mathrm{n}_{2}^{\prime} \mathrm{R}(400)$
now $n_{1}+n_{2}=n_{1}{ }_{1}+\mathrm{n}_{2}^{\prime}$
$\Rightarrow \frac{\mathrm{PV}}{\mathrm{R} 300}+\frac{5 \mathrm{PV}}{\mathrm{R} 100}=\frac{\mathrm{P}_{0} \mathrm{~V}}{\mathrm{R} 300}+\frac{4 \mathrm{P}_{0} \mathrm{~V}}{\mathrm{R} 400}$
$\Rightarrow \frac{\mathrm{P}}{3}+5 \mathrm{P}=\frac{\mathrm{P}_{0}}{3}+\mathrm{P}_{0}$
$\Rightarrow \frac{16 \mathrm{P}}{3}=\frac{4 \mathrm{P}_{0}}{3}$
$\Rightarrow \mathrm{P}_{0}=4 \mathrm{P}$
Now, $\frac{\mathrm{n}_{2}^{\prime}}{\mathrm{n}_{1}^{\prime}}=\frac{\frac{4 \mathrm{P}_{0} \mathrm{~V}}{\mathrm{R} 400}}{\frac{\mathrm{P}_{0} \mathrm{~V}}{\mathrm{R} 300}}=3$
Q. $9 \quad 210 \mathrm{~g}+\rho_{\text {in }} \mathrm{Vg}=\rho_{0} V \mathrm{~g}$
$\rho_{\text {in }}=$ density of air inside the balloon
$\rho_{\mathrm{o}}=$ density of air outside the balloon
$\rho_{\mathrm{o}}-\rho_{\text {in }}=\frac{210}{\mathrm{~V}}=\frac{210}{\frac{4}{3} \pi \mathrm{r}^{3}}$
$\frac{\mathrm{PM}}{\mathrm{R}}\left(\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}_{\text {in }}}\right)=\frac{210 \times 3}{4 \pi \mathrm{r}^{3}}$
$\frac{1}{\mathrm{~T}_{0}}-\frac{1}{\mathrm{~T}_{\mathrm{in}}}=\frac{630 \times 8}{4 \pi(11.7)^{3}} \times \frac{8.31}{10^{5} \times 30 \times 10^{-3}} \approx 0.0007$
$\mathrm{T}_{\mathrm{in}} \approx 384=111^{\circ} \mathrm{C}$
closest answer the option (C)
Q. 10 (B)
$\mathrm{PV}^{\gamma}=\mathrm{C}$
$\mathrm{P}^{1-\gamma} \mathrm{T}^{\gamma}=\mathrm{C}$
$(0.28)^{1-\gamma} \times(233)^{\gamma}=1^{1-\gamma} \times \mathrm{T}^{\gamma}$
$\gamma=\frac{7}{5}$
$(0.28)^{1-7 / 5} \times(233)^{7 / 5}=1^{1-7 / 5} \times \mathrm{T}^{7 / 5}$
$\mathrm{T}^{7 / 5}=233^{7 / 5} \times(0.28)^{-2 / 5}$
$\mathrm{T}=\frac{233}{(0.28)^{2 / 7}}$
T is coming
more than 298 K or $25^{\circ} \mathrm{C}$
$\therefore \mathrm{T}$ is more than $25^{\circ} \mathrm{C}$
so to cool it an extra ac is required.
Q. 11 (A)

expansion is against
vacuum $\therefore \Delta \mathrm{W}=0$
Insulated container $\therefore \Delta \mathrm{Q}=0$
first law of thermodynamics
$\Delta \mathrm{Q}=\Delta \mathrm{W}+\Delta \mathrm{U}$
$0=0+\Delta \mathrm{U}$
$0=0+\Delta \mathrm{U}$
$\Delta \mathrm{U}=0$
Q. 12 (C)

$$
\mathrm{W}_{\mathrm{i}}>\mathrm{W}_{\mathrm{a}}>0
$$

Q. 13 (A)

$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{n}_{2}}$
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{n}_{1}}=\frac{\mathrm{P}_{1} \frac{\mathrm{~V}}{3}}{\mathrm{n}_{2}} \Rightarrow \mathrm{n}_{2}=\frac{\mathrm{n}_{1}}{3}$
Now, $\frac{2}{3}$ of Gas will come out to make the presence P_{1} Hence 66.66\%
Q. 14 (D)
$\Delta \mathrm{Q}_{1 \rightarrow 2}=\Delta \mathrm{W}_{12}$

$\mathrm{W}_{\text {total }}=\Delta \mathrm{W}_{12}+\Delta \mathrm{W}_{31}$
$10=\Delta \mathrm{W}_{12}-20$
$\Delta \mathrm{Q}_{12}=\Delta \mathrm{W}_{12}=30 \mathrm{~J}$
Q. 15 (C)
from graph
Q. 16 (B)

For adiabatic process
$\mathrm{PV}^{\mathrm{\gamma}}=\mathrm{C}$
$P \gamma V^{\gamma-1}+\frac{d p}{d v} v^{\gamma}=0$
$\gamma \mathrm{P}=-\mathrm{V} \frac{\mathrm{dp}}{\mathrm{dv}}$
Hence $\mathrm{n}=1$
Q. 17 (A)
Q. 18 (B)
$\mathrm{PV}^{2}=\mathrm{C}$
$\Rightarrow\left(\frac{\mathrm{nRT}}{\mathrm{V}}\right) \mathrm{V}^{2}=\mathrm{C}$
$\Rightarrow \mathrm{TV}=\mathrm{C}$

$$
\Rightarrow \mathrm{T}_{1} \mathrm{~V}_{1}=\mathrm{T}_{2} \mathrm{~V}_{2}
$$

\Rightarrow If temperature increases, volume decrease and vice versa.
$\Rightarrow \mathrm{V}_{2}>\mathrm{V}_{1}$ then $\mathrm{T}_{2}<\mathrm{T}_{1}$
Q. 19 (D)

Monoatomic gas $\Rightarrow \gamma=\frac{5}{3}$
$\mathrm{n}=1$
$\mathrm{PV}^{3}=\mathrm{C} \quad$ on comparing with $\mathrm{PV}^{\alpha}=\mathrm{C}$
Here $\alpha=3$
Heat capacity
$\mathrm{C}=\frac{\mathrm{R}}{\gamma-1}-\frac{\mathrm{R}}{\alpha-1}$
$\mathrm{C}=\frac{\mathrm{R}}{\left(\frac{2}{3}\right)}-\frac{\mathrm{R}}{(2)}$
$\mathrm{C}=\mathrm{R}\left[\frac{3}{2}-\frac{1}{2}\right]$
$\mathrm{C}=\mathrm{R}$

Q. 20 (B)

Ideal gas equation $\mathrm{PV}=\mathrm{nRT}$
For isobaric process
$\mathrm{V}=\left(\frac{\mathrm{nR}}{\mathrm{P}}\right) \mathrm{T}(\mathrm{V} \propto \mathrm{T}$ (straight line) $)$
Slope of line $=\left(\frac{\mathrm{nR}}{\mathrm{P}}\right)$
slope $\propto \frac{1}{\mathrm{P}}$
slope $_{3}>$ slope $_{2}>$ slope $_{1}$
$\mathrm{P}_{3}<\mathrm{P}_{2}<\mathrm{P}_{1}$

Q. 21 (A)

[Note : No. of mole of gas is not given, we have assumed no, of mole $=1$]

$$
T=\frac{P V}{R}
$$

T will be maximum when PV is maximum
$\mathrm{T}=\frac{\mathrm{PV}}{\mathrm{R}}=\frac{(4+2 \sin \theta)(4+2 \cos \theta)}{\mathrm{R}}$
As $\sin \theta$ and $\cos \theta$ both
can not be equal to 1 for same value of θ
$\therefore \mathrm{T}$ can not be $\frac{36}{\mathrm{R}}$
$\mathrm{T}_{\text {max }}$ should be less than $\frac{36}{\mathrm{R}}$

curve is above isothermal curve
\therefore temp. is more than $\frac{24}{\mathrm{R}}$ on the given process
So $\mathrm{T}_{\max }$ lie between $\frac{24}{\mathrm{R}}$ and $\frac{36}{\mathrm{R}}$
only one option is present
Q. 22 (A)

Adiabatic process
$\mathrm{TV}^{\gamma-1}=\mathrm{C}$
$\gamma=1+\frac{2}{\mathrm{f}}$
$\mathrm{TV}^{\frac{2}{\mathrm{f}}}=\mathrm{C}$
$\mathrm{C}_{\mathrm{v}}=\frac{\mathrm{fR}}{2}=\frac{3 \mathrm{R}(1+\mathrm{aRT})}{2}$
$\frac{\mathrm{fR}}{2}=\frac{3 \mathrm{Re}^{\mathrm{aRT}}}{2}$
$\frac{2}{f}=\frac{2}{3 e^{a R T}}$
$\mathrm{TV}^{\frac{2}{\text { 3earT }}}=\mathrm{C}$
$T V^{\frac{3 e^{\text {aRT }}}{2}}=C$
Ans. given is $\mathrm{TV}^{\frac{3}{2}} \mathrm{e}^{\text {arT }}$ So no option is matching may be due to printing mistake.
Q. 23 (C)

As dimension of hole is very small than mean path, then at equilibrium effusion rate of gas in both direction must be equal.

For this $\frac{\mathrm{P}_{1}}{\sqrt{\mathrm{~T}_{1}}}=\frac{\mathrm{P}_{2}}{\sqrt{\mathrm{~T}_{2}}}$
Mean free path $\propto \frac{\mathrm{T}}{\mathrm{P}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}} \times \frac{\sqrt{\mathrm{T}_{2}}}{\sqrt{\mathrm{~T}_{1}}}$
$\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}}=\sqrt{\frac{150}{300}}=0.7$
Q. 24
(A)

In sudden expansion gas do not get enough time for exchange of heat.
\therefore Process is adiabatic.
Q. 25
(A)

$\mathrm{bc} \Rightarrow$ Isothermal process so U remain constant
$\mathrm{cd} \Rightarrow$ Isentropic process so S remain constant

bc should be straight line parallel to \& cd graph should

Q. 26 (D)

$$
\begin{aligned}
& \eta=1-\frac{T_{1}}{T_{2}}=1-\left(\frac{V_{2}}{V_{1}}\right)^{2 / 3} \\
& -\frac{1}{4}=\left(\frac{1}{V_{1}}\right)^{2 / 3} \Rightarrow V_{1}=8 \mathrm{~m}^{3}
\end{aligned}
$$

Q. 27 (A)

$\mathrm{U}=\frac{5}{2} \mathrm{PV}+\mathrm{c}=\frac{5}{2} \mathrm{nRT}+\mathrm{C}$
$\mathrm{f}=5 \quad \gamma=7 / 15$
$\mathrm{PV}^{7 / 5}=$ constant $\Rightarrow \mathrm{P}^{5} \mathrm{~V}^{7}=$ constant
Q. 28 (C)
(A), (B) \& (D) are wrong and (C) is correct
Q. 29 (D)
$\Delta \mathrm{U}=\mathrm{f} / 2(\Delta \mathrm{P}) \mathrm{V}=250 \mathrm{~J}$
Q. 30 (B)
$\mathrm{W}=\mathrm{nRT} \operatorname{In}\left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)+\frac{\mathrm{nR} \Delta \mathrm{T}}{1-\gamma}$
and $\mathrm{TV}_{2}^{\mathrm{r}-1}=\mathrm{T}_{\mathrm{f}} \mathrm{V}_{\mathrm{f}}^{\gamma-1}$
$V_{2}=\left(\frac{T_{f}}{T}\right)^{\frac{1}{\gamma-1}} V_{f}$
V_{2} is greater for monotonic
Q. 31 (A)
$\Delta \mathrm{W}=-$
$\Delta \mathrm{U}=0$
$\Delta \mathrm{Q}=-$
Q. 32 (A)
$\mathrm{PV}^{2}=\mathrm{B}=$ constant
\& $\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow \mathrm{nRTV}=\beta=$ costant
from initial condition of $\mathrm{T} \& \mathrm{~V}$
$\beta=0.073 \mathrm{pa}-\mathrm{m}^{6}$
Q. 33 (B)
$\eta=\frac{W}{Q_{\text {in }}}$
$\Rightarrow W=\eta \mathrm{Q}_{\text {in }}$
$\mathrm{Q}=\int \mathrm{C} d \mathrm{t}$
For maximum amount of work, efficiency should be maximum, means we have to assume carnot engine.

$$
\begin{aligned}
& \therefore \eta=1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=1-\frac{200}{\mathrm{~T}} \\
& \therefore \mathrm{~W}=\int \mathrm{nQ}_{\mathrm{in}}=-\int_{600}^{400}\left(1-\frac{200}{\mathrm{~T}}\right) \mathrm{CdT} \\
& =-\mathrm{C}[\mathrm{~T}-200 \ell \mathrm{nT}]_{600}^{400} \\
& \mathrm{~W}=-\mathrm{C}\left[-200+\ln \left(\frac{3}{2}\right) 200\right] \\
& \mathrm{C}=1(\text { Given }) \\
& \therefore \mathrm{W}=200-200 \ell \mathrm{n}\left(\frac{3}{2}\right) \\
& \mathrm{W}=200\left(1-\ell \mathrm{n}\left(\frac{3}{2}\right)\right)
\end{aligned}
$$

Q. 34 (B)
$\frac{\gamma \mathrm{R}}{\gamma-1}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)=2 \mathrm{RT}_{1} \ln \left(\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right)^{\frac{\gamma}{1-\gamma}}$
$\mathrm{T}_{2}-\mathrm{T}_{1}=2 \mathrm{~T}_{1} \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)$
$\mathrm{x}-1=\ln \left(\mathrm{X}^{2}\right)$
$\mathrm{x}^{2}=\mathrm{e}^{\mathrm{x}-1}$
Option (B)

Q. 35 (A)

For ideal gas
$\mathrm{PV}=\mathrm{nRT}$
($\mathrm{n}=1$), so $\mathrm{PV}=\mathrm{RT}$
$\mathrm{PV}=8.314 \mathrm{~T}$
Slope of continuous line should be greater than dotted line

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)

$\mathrm{dU}=\mathrm{nC}_{\mathrm{V}} \mathrm{dT}=\mathrm{n} \frac{5}{2} \mathrm{RdT}$
$\mathrm{dQ}=\mathrm{nC}_{\mathrm{P}} \mathrm{dT}=\mathrm{n} \times \frac{7}{2} \mathrm{RdT}$
$\mathrm{dW}=\mathrm{nRdT}=\mathrm{nRdT}$
$d U: d Q: d W$
$\Rightarrow \mathrm{n} \frac{5}{2} \mathrm{nRdT}: \mathrm{n} \frac{7}{2} \mathrm{RdT}: \mathrm{nRdT}$

$$
5: 7: 2
$$

Q. 2 [3600]

$k i+u i=k f+u f$
$\frac{1}{2} \mathrm{~m}_{\mathrm{gas}} \mathrm{v}^{2}+\frac{\mathrm{f}}{2} n R T_{\mathrm{i}}=0+\frac{\mathrm{f}}{2} n R T_{\mathrm{f}}$
$\frac{3}{2} n R\left(T_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)=\frac{1}{2} \mathrm{~m}_{\mathrm{gas}} \mathrm{v}^{2}$
$\frac{3}{2}(1) \mathrm{R}[\Delta \mathrm{T}]=\frac{1}{2}(4)(30)^{2}$
$\Delta T=\frac{1200}{R}=\frac{x}{3 R} \Rightarrow x=3600$
Q. 3 (3)

Maxwell's Boltzmann distribution curve is always drawn for no. of molecules (N) vs velocity of molecules. so statement-1 is false.
T.K.E. of diatomic molecule $=\frac{3}{2} \mathrm{KT}$
R.K.E. of diatomic molecule $=\frac{2}{2} \mathrm{KT}$ Statement-2 is false.
Q. 4
Q. 5
Q. 6 [400]
$\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{0}}}$
$200=\sqrt{\frac{3 \mathrm{R} \times 300}{\mathrm{M}_{0}}}$
$\frac{\mathrm{x}}{\sqrt{3}}=\sqrt{\frac{3 \mathrm{R} \times 400}{\mathrm{M}_{0}}}$
$\frac{200}{\frac{x}{\sqrt{3}}}=\sqrt{\frac{3}{4}}$
$\frac{200 \sqrt{3}}{x}=\sqrt{\frac{3}{2}}$
$X=400 \mathrm{~m} / \mathrm{s}$
Q. 7 (1)

$$
\frac{\mathrm{R}}{2}=\mathrm{f}
$$

$\mathrm{PV}=\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{RT}$
$\mathrm{P} \times \mathrm{V}=\left[\frac{16}{32}+\frac{28}{28}+\frac{44}{44}\right] \mathrm{RT}$
$\mathrm{PV}=\left[\frac{1}{2}+1+1\right] \mathrm{RT}$
$\mathrm{P}=\frac{5}{2} \frac{\mathrm{RT}}{\mathrm{V}}$
Q. 9 (4)

$$
\lambda=\frac{\mathrm{RT}}{\sqrt{2} \pi \mathrm{~d}^{2} \mathrm{~N}_{\mathrm{A}} \mathrm{P}}
$$

$$
\lambda=102 \mathrm{~nm}
$$

Q. 10 (1)

Since each vibrational mode has 2 degrees of freedom hence total vibrational degrees of freedom $=48$
$\mathrm{f}=3+3+48=54$
$\gamma=1+\frac{2}{f}=\frac{28}{27}=1.03$

Q. 11 (2)

Let the final temperature of the mixture be T.

Since, there is no loss in energy.
$\Delta \mathrm{U}=0$
$\Rightarrow \frac{F_{1}}{2} n_{1} R \Delta T+\frac{F_{2}}{2} n_{1} R \Delta T=0$
$\Rightarrow \frac{F_{1}}{2} n_{1} R\left(T_{1}-T\right)+\frac{F_{2}}{2} n_{2} R\left(T_{2}-T\right)=0$
$\Rightarrow T=\frac{\mathrm{F}_{1} n_{1} R T_{1}+\mathrm{F}_{2} \mathrm{n}_{2} R T_{2}}{\mathrm{~F}_{1} \mathrm{n}_{1} R+\mathrm{F}_{2} \mathrm{n}_{2} R} \Rightarrow \frac{\mathrm{~F}_{1} \mathrm{n}_{1} \mathrm{~T}_{1}+\mathrm{F}_{2} \mathrm{n}_{2} \mathrm{~T}_{2}}{\mathrm{~F}_{1} \mathrm{n}_{1}+\mathrm{F}_{2} \mathrm{n}_{2}}$
Q. 12 (2)
(2) $f=4+3+3=10$
assuming non linear
$\beta=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}}=1+\frac{2}{\mathrm{f}}=\frac{12}{10}=1.2$

Q. 13 (1)

Energy associated with each degree of freedom per molecule $=\frac{1}{2} k_{B} T$.
Q. 14 (3)
Q. 8 (3)

Vrms $=\sqrt{\frac{3 R T}{M}}$
$\operatorname{Vavg}=\sqrt{\frac{8}{\pi} \frac{\mathrm{RT}}{\mathrm{M}}}$

$$
\frac{\mathrm{v}_{\text {ms }}}{\mathrm{v}_{\text {avg }}}=\sqrt{\frac{3 \pi}{8}}
$$

Q. 15 (4)

Q. 16 (1)
Q. 17 (3)
Q. 18 (3)
Q. 19 (4)
Q. 20 (3)
Q. 21 (1)
Q. 22 (3)
Q. 23 (1)
$\mathrm{V}_{\mathrm{RMS}}=\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}_{\mathrm{w}}}}$
At the same temperature $\mathrm{V}_{\text {RMS }} \propto \frac{1}{\sqrt{\mathrm{M}_{\mathrm{w}}}}$
$\Rightarrow \mathrm{V}_{\mathrm{H}}>\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{C}}$
Option (1)
Q. 24 (3)

$$
\mathrm{PV}=\mathrm{nRT}
$$

$400 \times 10^{3} \times 100 \times 10^{-6}=\mathrm{n}\left(\frac{25}{3}\right)(300)$
$\mathrm{n}=\frac{2}{25}$
$\mathrm{n}=\mathrm{n}_{1}+\mathrm{n}_{2}$
$\frac{2}{25}=\frac{\mathrm{M}_{1}}{2}+\frac{\mathrm{M}_{2}}{32}$
Also $\mathrm{M}_{1}+\mathrm{M}_{2}=0.76 \mathrm{gm}$

$$
\frac{\mathrm{M}_{2}}{\mathrm{M}_{1}}=\frac{16}{3}
$$

Q. 25 (1)
Q. 26 (3)
Q. 27 [500]

Given
Translation K.E. of $\mathrm{N}_{2}=$ K.E. of electron
$\frac{3}{2} \mathrm{kT}=\mathrm{eV}$
$\frac{3}{2} \times 1.38 \times 10^{-23} \mathrm{~T}=1.6 \times 10^{-19} \times 0.1$
$\Rightarrow \mathrm{T}=773 \mathrm{k}$
$\mathrm{T}=773-273=500^{\circ} \mathrm{C}$
Q. 28 [50]
$\mathrm{PV}^{-3}=\mathrm{K}$
$P^{x}=K$
$X=-3$
$W=-\left[\frac{\mathrm{nR} \Delta \mathrm{T}}{\mathrm{x}-1}\right]=-\left[\frac{\mathrm{nR}(200)}{-3-1}\right]=50(\mathrm{nR})$
Q. 29 (2)
$\mathrm{PV}^{1 / 2}=\mathrm{C}$
$\therefore \quad \mathrm{TV}^{-1 / 2}=\mathrm{C}$
$\therefore \frac{\mathrm{T}}{\sqrt{\mathrm{V}}}=\mathrm{C}$
$\therefore \quad \frac{\mathrm{T}_{1}}{\sqrt{\mathrm{~V}_{1}}}=\frac{\mathrm{T}_{2}}{\sqrt{\mathrm{~V}_{2}}}$
$\therefore\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)^{2}=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=2$
$\therefore \quad \frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\sqrt{2}$
Q. 30 [208 K]
$\frac{\mathrm{W}}{\mathrm{Q}_{\mathrm{in}}}=\frac{1}{4}=1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}=\frac{3}{4}$
$\frac{\mathrm{W}}{\mathrm{Q}_{\mathrm{in}}}=\frac{1}{2}=1-\frac{\left(\mathrm{T}_{2}-52\right)}{\mathrm{T}_{1}}$
$\frac{\mathrm{T}_{2}}{2}=\mathrm{T}_{2}-\frac{3}{4} \mathrm{~T}_{1}+52$
$\mathrm{T}_{1}=208 \mathrm{~K}$
Q. 31 [60]
$\mathrm{V}=\mathrm{KT}^{2 / 3}$
$\mathrm{V}^{3 / 2}=(\mathrm{K})^{3 / 2} \mathrm{~T}$

$$
\begin{array}{ll}
\therefore & \mathrm{TV}^{-3 / 2}=\text { const. } \Rightarrow \mathrm{x}-1=-3 / 2 \\
\therefore & \mathrm{x}=-1 / 2 \\
\therefore & \omega=\frac{\mathrm{nR} \Delta \mathrm{~T}}{-\mathrm{x}+1} \\
= & \frac{1(\mathrm{R})(90)}{+\frac{1}{2}+1}=60 \mathrm{R}
\end{array}
$$

Q. 32 (2)

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{AB}}=2 \mathrm{P}_{1} \mathrm{~V}_{1} \ell \mathrm{n} 2 \\
& \mathrm{~W}_{\mathrm{BC}}=-\mathrm{P}_{1} \mathrm{~V}_{1} \\
& \mathrm{~W}_{\mathrm{CA}}=0 \\
& \mathrm{~W}_{\mathrm{ABCA}}=\left(2 \mathrm{P}_{1} \mathrm{~V}_{1} \ell \mathrm{n} 2-\mathrm{P}_{1} \mathrm{~V}_{1}\right) \\
& =\mathrm{nRT}(2 \ell \mathrm{n} 2-1)
\end{aligned}
$$

Q. 33 (1)

P-iv; Q-iii ; R-ii ; S-i
Q. 34 (1)
$\mathrm{W}_{\mathrm{AB}}=\mathrm{nRT} \ln 2=\mathrm{RT} \ln 2$
$\mathrm{W}_{\mathrm{BC}}=0$
$W_{C A}=\frac{\mathrm{PV}-\frac{\mathrm{P}}{4} \times 2 \mathrm{~V}}{1-\gamma}=\frac{\mathrm{PV}}{2(1-\gamma)}$
$\mathrm{W}_{\mathrm{ABCA}}=\mathrm{RT} \ln 2+\frac{\mathrm{RT}}{2(1-\gamma)}$
$\mathrm{RT}=\left[\ln 2-\frac{1}{2(\gamma-1)}\right]$

Q. 35 (1)

Heat and work are treated as path functions in thermodynamics.
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\Delta \mathrm{W}$
Since work done by gas depends on type of process i.e. path and $\Delta \mathrm{U}$ depends just on initial and final states, so $\Delta \mathrm{Q}$ i.e. heat, also has to depend on process is path.

Q. 36 (113)

$$
\begin{aligned}
\mathrm{n}=0.60= & 1-\frac{\mathrm{T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}} \\
\frac{\mathrm{~T}_{\mathrm{L}}}{\mathrm{~T}_{\mathrm{H}}}=0.4 & \Rightarrow \mathrm{TL}=0.4 \times 400 \\
& =160 \mathrm{~K} \\
& =-113^{\circ} \mathrm{C}
\end{aligned}
$$

Q. 37 (4)
$\eta=\frac{T_{2}}{T_{1}}=\frac{Q_{2}}{Q_{1}}=\frac{Q_{1}-W}{Q_{1}}\left(Q W=Q_{1}-Q_{2}\right)$
$\frac{400}{800}=1-\frac{\mathrm{W}}{\mathrm{Q}_{1}}$
$\frac{\mathrm{W}}{\mathrm{Q}_{1}}=1-\frac{1}{2}=\frac{1}{2}$
$Q_{1}=2 W=2400 \mathrm{~J}$
Q38 (2)
(2) Option (a) is wrong ; since in adiabatic process $\mathrm{V} \neq$ constant.
Option (b) is wrong, since in isothermal process
T = constant
Option (c) \& (d) matches isothermes \& adiabatic formula :
TV $\gamma-1=$ constant $\& \frac{\mathrm{~T}^{\gamma}}{\mathrm{p}^{\gamma-1}}=$ constant
Q. 39 (1)

Adiabatic process is from C to D
$W D=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-\gamma}$
$=\frac{\mathrm{P}_{\mathrm{D}} \mathrm{V}_{\mathrm{D}}-\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}}}{1-\gamma}$
$=\frac{200(3)-(100)(4)}{1-1.4}$
$=-500$ JAns. (1)
Q. 40 (1)
$\mathrm{PV}^{\mathrm{V}}=$ constant
Differentiating
$\frac{d P}{d V}=-\frac{\gamma P}{V}$
$\frac{\mathrm{dP}}{\mathrm{P}}=-\frac{\gamma \mathrm{dV}}{\mathrm{V}}$

Q. 41 (4)

After piston is removed

Q. 42 [100]
Q. 43 (4)
Q. 44 [17258]
Q. 45 (2)
Q. 46 (4)
Q. 47 (2)
Q. 48 (2)
Q. 49 (4)
Q. 50 [500]
Q. 51 (1)
Q. 52 (1)
Q. 53 (1)
Q. 54 [480]
$v=1.5$
$\mathrm{p}_{1} \mathrm{v}_{1}^{v}=\mathrm{p}_{2} \mathrm{v}_{2}^{v}$
(200) (1200) $)^{1.5}=\mathrm{P}^{2}(300)^{1.5}$
$\mathrm{P}_{2}=200[4]^{3 / 2}=1600 \mathrm{kPa}$
|W.D. $\left\lvert\,=\frac{\mathrm{p}_{2} \mathrm{p}_{2}-\mathrm{p}_{1} \mathrm{v}_{1}}{\mathrm{v}-1}=\left(\frac{480-240}{0.5}\right)=480 \mathrm{~J}\right.$
Q. 55 (4)
Q. 56 [25]

Pressure is not changing \Rightarrow isobaric process
$\Rightarrow \Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=\frac{5 \mathrm{nR} \Delta \mathrm{T}}{2}$
and $\mathrm{W}=\mathrm{nR} \Delta \mathrm{T}$

$$
\frac{\Delta \mathrm{U}}{\mathrm{~W}}=\frac{5}{2}=\frac{\mathrm{x}}{10} \Rightarrow \mathrm{x}=25.00
$$

JEE- ADVANCED
 PREVIOUS YEAR'S

Q. 1 (A)

Number of moles of $\mathrm{He}=\frac{1}{4}$
Now $T_{1}(5.6)^{\gamma-1}=T_{2}(0.7)^{\gamma-1}$

$$
\begin{aligned}
\mathrm{T}_{1} & =\mathrm{T}_{2}\left(\frac{1}{8}\right)^{2 / 3} \\
4 \mathrm{~T}_{1} & =\mathrm{T}_{2}
\end{aligned}
$$

Work done $=-\frac{n R\left[T_{2}-T_{1}\right]}{\gamma-1}=-\frac{\frac{1}{4} R\left[3 T_{1}\right]}{\frac{2}{3}}=-\frac{9}{8} R T_{1}$
Q. $2(\mathrm{~A})-\mathrm{p}, \mathrm{r}, \mathrm{t},(\mathrm{B})-\mathrm{p}, \mathrm{r}(\mathrm{C})-\mathrm{q}, \mathrm{s}$, (D) $-\mathrm{r}, \mathrm{t}$
$\mathrm{A} \rightarrow \mathrm{B} \Rightarrow \mathrm{V} \downarrow \mathrm{P}$ const $\Rightarrow \mathrm{T} \downarrow \mathrm{U} \downarrow$
(p), (r), (t)
$B \rightarrow C \Rightarrow d \omega \downarrow 0$
$\mathrm{P} \downarrow \mathrm{T} \downarrow$
$\mathrm{d} \phi=\mathrm{du}+\mathrm{d} \omega$
(p), (r)
$\mathrm{C} \rightarrow \mathrm{D} \Rightarrow \mathrm{V} \uparrow \Rightarrow \mathrm{T} \uparrow$
du
$\mathrm{d} \omega+\mathrm{ve}$
$\mathrm{d} \omega+\mathrm{ve}$
(q), (s)
$\mathrm{D} \rightarrow \mathrm{A} \Rightarrow \mathrm{dw} \Rightarrow-\mathrm{ve}$
(r), (t)
$\mathrm{dq} \Rightarrow-\mathrm{ve}$
$d u=0$
Q. 3 (D)
$\frac{v_{\mathrm{Rms}_{\mathrm{He}}}}{\mathrm{v}_{\mathrm{Rms}_{\mathrm{Ar}}}}=\frac{\sqrt{\frac{3 \mathrm{RT}}{\mathrm{m}_{\mathrm{He}}}}}{\sqrt{\frac{3 \mathrm{RT}}{\mathrm{m}_{\mathrm{Ar}}}}}=\sqrt{\frac{\mathrm{m}_{\mathrm{Ar}}}{\mathrm{m}_{\mathrm{He}}}}=\sqrt{\frac{40}{4}}=\sqrt{10} \approx 3.16$
Q. 4 (D)
$\Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{P}} \Delta \mathrm{T}$
$=2\left(\frac{f}{2} R+R\right) \Delta T$
$=2\left[\frac{3}{2} R+R\right] \times 5$
$=2 \times \frac{5}{2} \times 8.31 \times 5=208 \mathrm{~J}$
Q. 5 (D)
$P_{1}=\frac{\rho_{1} R T}{M_{1}}$
$P_{2}=\frac{\rho_{2} R T}{M_{2}}$
by (i) and (ii)

$$
\frac{\rho_{1}}{\rho_{2}}=\frac{8}{9}
$$

Q. 6 (A,B,C,D)
$\mathrm{q}=\mathrm{mCT}$
$\frac{\mathrm{dq}}{\mathrm{dt}}=\mathrm{mc} \frac{\mathrm{dT}}{\mathrm{dt}}$
$\mathrm{R}=$ rate of absortion of heat $=\frac{\mathrm{dq}}{\mathrm{dt}} \propto \mathrm{C}$
(i) in $0-100 \mathrm{k}$

C increases, so R increases but not linearly
(ii) $\Delta q=m C \Delta T$ as C is more in $(400 k-500 k)$ then $(0$ -100 k) so heat is increasing.
(iii) C remains constant so there no change in R from ($400 \mathrm{k}-500 \mathrm{k}$)
(iv) C is increases so R is increases in range (200 k 300k)

Q. 7 (A)

In $\mathrm{F} \rightarrow \mathrm{G}$ work done in isothermal proces is $\mathrm{nRT} \ln$
$\left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)=32 \mathrm{P}_{0} \mathrm{~V}_{0} \ln \left(\frac{32 \mathrm{~V}_{0}}{\mathrm{~V}_{0}}\right)$
$=32 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2^{5}=160 \mathrm{P}_{0} \mathrm{~V}_{0} \ln 2$
In $G \rightarrow E, \Delta W=P_{0} \Delta V=P_{0}\left(31 V_{0}\right)=31 P_{0} V_{0}$
In $\mathrm{G} \rightarrow \mathrm{H}$ work done is less than $31 \mathrm{P}_{0} \mathrm{~V}_{0}$ i.e., $24 \mathrm{P}_{0} \mathrm{~V}_{0}$
In $\mathrm{F} \rightarrow \mathrm{H}$ work done is $36 \mathrm{P}_{0} \mathrm{~V}_{0}$
Q. 8 [2]
$\mathrm{w}_{\mathrm{ibf}}=150 \mathrm{~J}$
$\mathrm{w}_{\text {iaf }}=200 \mathrm{~J}$
$\mathrm{Q}_{\text {iaf }}=500 \mathrm{~J} \mathrm{So}_{\text {iaf }}=300 \mathrm{~J}$

So $\mathrm{U}_{\mathrm{f}}=400 \mathrm{~J}$
$\mathrm{U}_{\mathrm{ib}}=100 \mathrm{~J}$
$\mathrm{Q}_{\mathrm{ib}}=100+50=150 \mathrm{~J}$
$Q_{i b f}=300+150=450 \mathrm{~J}$
So the required ratio $\frac{Q_{b f}}{Q_{i b}}=\frac{450-150}{150}=2$

Q. 9 (D)

Let final temperature of gases is T
Heat rejected by gas in lower compartment $\left(\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}\right)=$
$2 \times \frac{3}{2} R(700-T)$
Heat received by gas in above compartment $\left(\mathrm{nC}_{\mathrm{P}} \Delta \mathrm{T}\right)$
$=2 \times \frac{7}{2} R(T-400)$
Equating above

$$
2100-3 \mathrm{~T}=7 \mathrm{~T}-2800
$$

$$
\Rightarrow \mathrm{T}=490 \mathrm{~K}
$$

Q. 10 (D)

$$
\begin{aligned}
& \Delta \mathrm{W}_{1}+\Delta \mathrm{U}_{1}=\Delta \mathrm{Q}_{1} \\
& \Delta \mathrm{~W}_{2}+\Delta \mathrm{U}_{2}=\Delta \mathrm{Q}_{2} \\
& \Delta \mathrm{Q}_{1}+\Delta \mathrm{Q}_{2}=0 \\
& \frac{7}{2} \mathrm{R}(\mathrm{~T}-400)=\frac{5}{2} \mathrm{R}(700-\mathrm{T}) \\
& \begin{array}{r}
\Rightarrow \quad \mathrm{T}=\frac{6300}{12}=525 \mathrm{~K} \\
\text { So } \Delta \mathrm{W}_{1}+\Delta \mathrm{W}_{2}=2 \cdot \mathrm{R} \cdot(525-400)+2 \mathrm{R}(525-700) \\
\quad=+250 \mathrm{R}-350 \mathrm{R} \\
\quad=-100 \mathrm{R}
\end{array}
\end{aligned}
$$

Q. 11 (D)

In first process, $\Delta U=W=\frac{P_{i} V_{i}-P_{f} V_{f}}{\gamma-1}=112.5 \mathrm{~J}$
In two-step process, $\Delta Q=\Delta U+\left(W_{1}+W_{2}\right)$
$=\Delta U+P_{i}\left(\mathrm{~V}_{f}-\mathrm{V}_{i}\right)=112.5+700=812.5 \mathrm{~J}$
Hence, (D)

Answer Q. 12 Q. 13 and Q. 14 by appropriately matching the information given in the three columns of the following table.

An ideal gas is undergoing a cyclic thermodynamic process in different ways as shown in the corresponding $\mathrm{P}-\mathrm{V}$ diagrams in column 3 of the table. Consider only path from state 1 to state 2 . W denotes the corresponding work done on the system. The equations and plots in the table have standard notations as used in thermodynamic process. Here γ is the ratio of heat capacities at constant pressure and constant volume.

The number of moles in the gas is n.

Column-1

Column-2
Column-3
(I) $\mathrm{W}_{1 \rightarrow 2}=\frac{1}{\gamma-1}\left(\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}\right)$
(i) Isothermal
(P)

(II) $\mathrm{W}_{1 \rightarrow 2}=-\mathrm{PV}_{2}+\mathrm{PV}_{1}$
(ii) Isochoric
(Q)

(III) $\mathrm{W}_{1 \rightarrow 2}=0$
(iii) Isobaric
(R)

(IV) $\mathrm{W}_{1 \rightarrow 2}=-\mathrm{nRT} \ln \left(\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}\right)$
(iv) Adiabatic
(S)

Q. 12 (A)
Q. 13 (D)
Q. 14 (D)

12 to 14
I. $\quad \mathrm{W}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}-\mathrm{P}_{1} \mathrm{~V}_{1}}{\gamma-1}$
(iv) Adiabatic Q
II. $\mathrm{W}=-\mathrm{P}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
(iii) Isobaric P
III. $\mathrm{W}=0$
(ii) Isochoric S
IV. $\mathrm{W}=-n \mathrm{RT} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}$
(i) Isothermal R
Q. 15 (B, C, D)

(A) Process I is not isochoric, V is decreasing
(B) Process II is isothermal expansion.
$\Delta \mathrm{U}=0, \mathrm{~W}>0$
$\Delta \mathrm{Q}>0$
(C) Process IV is isothermal compression.
$\Delta \mathrm{U}=0, \mathrm{~W}<0$
$\Delta \mathrm{Q}<0$
(D) Process I and III are NOT isobaric because in isobaric process $\mathrm{T} \propto \mathrm{V}$ hence isobaric $\mathrm{T}-\mathrm{V}$ graph will be linear.
Q. 16 (900)
$\mathrm{v}_{\mathrm{i}}=\mathrm{v}$
$\mathrm{v}_{\mathrm{F}}=8 \mathrm{v}$
For adiabatic process $\left\{\gamma=\frac{5}{3}\right.$ for monoatomic process
$\mathrm{T}_{1} \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}^{\gamma-1}$
$100(\mathrm{v})^{2 / 3}=\mathrm{T}_{2}(8 \mathrm{v})^{2 / 3}$
$\mathrm{T}_{2}=25 \mathrm{k}$
$\Delta \mathrm{U}=\mathrm{nc}_{\mathrm{v}} \Delta \mathrm{T}=1\left(\frac{\mathrm{FR}}{2}\right)[100-25]=12 \times 75=900$ Joule
Q. 17 (C)

Process - I is an adiabatic process
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\Delta \mathrm{Q}=0$
$\mathrm{W}=-\Delta \mathrm{U}$

Volume of gas is decreasing $\Rightarrow \mathrm{W}<0$
$\Delta \mathrm{U}>0$
\Rightarrow Temperatuer of gas increases.
\Rightarrow No heat is exchanged between the gas and surround-
ing
Process - II is an isobaric process
(Pressure remain constant)
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=3 \mathrm{P}_{0}\left[3 \mathrm{~V}_{0}-\mathrm{V}_{0}\right]=6 \mathrm{P}_{0} \mathrm{~V}_{0}$
Process - III is an isochoric proces
(Volume remain constant)
$\Delta \mathrm{Q}=\Delta \mathrm{U}=\mathrm{W}$
$\mathrm{W}=0$
$\Delta \mathrm{Q}=\Delta \mathrm{U}$
Process - IV is an isothermal process
(Temperature remains constant)
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\Delta \mathrm{U}=0$

Q. 18 (A, B)

From graph
Process $1 \rightarrow 2$ is isobaric with $\mathrm{P}=\frac{\mathrm{RT}_{0}}{\mathrm{~V}_{0}}$
Process $2 \rightarrow 3$ is isochoric with $\mathrm{V}=2 \mathrm{~V}_{0}$
Process $3 \rightarrow 4$ is isobaric with $\mathrm{P}=\frac{\mathrm{RT}_{0}}{2 \mathrm{~V}_{0}}$
Process $4 \rightarrow 1$ is isochoric with $\mathrm{V}=\mathrm{V}_{0}$
Work in cycle $=\frac{\mathrm{RT}_{0}}{\mathrm{~V}_{0}} \cdot \mathrm{~V}_{0}-\frac{\mathrm{RT}_{0}}{2 \mathrm{~V}_{0}} \cdot \mathrm{~V}_{0}=\frac{\mathrm{RT}_{0}}{2}$
$\mathrm{Q}_{1-2}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{n} . \frac{5 \mathrm{R}}{2} . \mathrm{T}_{0}$
$\mathrm{Q}_{2-3}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}=\mathrm{n} \cdot \frac{3 \mathrm{R}}{2} . \mathrm{T}_{0}$
$\therefore\left|\frac{\mathrm{Q}_{1-2}}{\mathrm{Q}_{2-3}}\right|=\frac{5}{3}$
$\mathrm{Q}_{3-4}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}=\mathrm{n} \cdot \frac{5 \mathrm{R}}{2} \cdot \frac{\mathrm{~T}_{0}}{2}$
$\therefore\left|\frac{\mathrm{Q}_{1-2}}{\mathrm{Q}_{3-4}}\right|=2$
Q. 19 (A,C,D)
$\mathrm{n}_{1}=5$ moles $\mathrm{C}_{\mathrm{V}_{1}}=\frac{3 \mathrm{R}}{2} \quad \mathrm{P}_{0} \mathrm{~V}_{0} \mathrm{~T}_{0}$
$\mathrm{n}_{2}=1$ mole $\mathrm{C}_{\mathrm{V}_{2}}=\frac{5 \mathrm{R}}{2}$
$\left(C_{v}\right)_{m}=\frac{\mathrm{n}_{1} \mathrm{C}_{\mathrm{v}_{1}}+\mathrm{n}_{2} \mathrm{C}_{\mathrm{v}_{2}}}{\mathrm{n}_{1}+\mathrm{n}_{2}}=\frac{5 \times \frac{3 \mathrm{R}}{2}+1 \times \frac{5 \mathrm{R}}{2}}{6}=\frac{5 \mathrm{R}}{3}$
$\gamma_{\mathrm{m}}=\frac{\left(\mathrm{c}_{\mathrm{p}}\right)_{\mathrm{m}}}{\left(\mathrm{c}_{\mathrm{v}}\right)_{\mathrm{m}}}=\frac{8}{5}$
\therefore Option 4 is correct
$\left(C_{p}\right)_{m}=\frac{5 R}{3}+R=\frac{8 R}{3}$
(1) $\mathrm{P}_{0} \mathrm{~V}_{0}^{\gamma}=\mathrm{P}\left(\frac{\mathrm{V}_{0}}{4}\right)^{\gamma} \mathrm{P} P=\mathrm{P}_{0}(4)^{8 / 5}=9.2 \mathrm{P}_{0}$ which is between $9 \mathrm{P}_{0}$ and $10 \mathrm{P}_{0}$
(2) Average K.E. $=5 \times \frac{3}{2} \mathrm{RT}+1 \times \frac{5 \mathrm{RT}}{2}$

$$
=10 \mathrm{RT}
$$

To calculate T

$$
\frac{\mathrm{P}_{0} \mathrm{~V}_{0}}{\mathrm{~T}_{0}}=9.2 \mathrm{P}_{0} \times \frac{\mathrm{V}_{0}}{4 \times \mathrm{T}}
$$

so $T=\frac{9.2}{4} \mathrm{~T}_{0}$
Now average $\mathrm{KE}=10 \mathrm{R} \times 9.2 \frac{\mathrm{~T}_{0}}{4}=23 \mathrm{RT}_{0}$
(3) $\mathrm{W}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1}=\frac{\mathrm{P}_{0} \mathrm{~V}_{0}-9.2 \mathrm{P}_{0} \times \frac{\mathrm{V}_{0}}{4}}{3 / 5}=-13 \mathrm{RT}_{0}$
Q. 20 (3)
(I) Degree of freedom $\mathrm{f}=3$

Work done in any process $=$ Area under $\mathrm{P}-\mathrm{V}$ graph \Rightarrow Work done in $1 \rightarrow 2 \rightarrow 3=\mathrm{P}_{0} \mathrm{~V}_{0}$

$$
=\frac{\mathrm{RT}_{0}}{3} \Rightarrow(\mathrm{Q})
$$

(II) Change in internal energy $1 \rightarrow 2 \rightarrow 3=$

$$
\Delta \mathrm{U}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{~T}
$$

$$
=\frac{\mathrm{f}}{2} \mathrm{nR} \Delta \mathrm{~T}
$$

$$
=\frac{\mathrm{f}}{2}\left(\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}-\mathrm{P}_{\mathrm{i}} \mathrm{~V}_{\mathrm{i}}\right)
$$

$$
=\frac{3}{2}\left(\frac{3 \mathrm{P}_{0}}{2} 2 \mathrm{~V}_{0}-\mathrm{P}_{0} \mathrm{~V}_{0}\right)
$$

$$
=3 \mathrm{P}_{0} \mathrm{~V}_{0}
$$

$$
=\Delta \mathrm{U}=\mathrm{RT}_{0} \Rightarrow(\mathrm{R})
$$

(III) Heat absorbed in $1 \rightarrow 2 \rightarrow 3$
for any process, $1^{\text {st }}$ law of thermodynamics

$$
\begin{aligned}
& \Delta \mathrm{Q}=\Delta \mathrm{W}+\omega \\
& \Delta \mathrm{Q}=\mathrm{RT}_{0}+\frac{\mathrm{RT}_{0}}{3} \\
& \Delta \mathrm{Q}=\frac{4 \mathrm{RT}_{0}}{3} \Rightarrow(\mathrm{~S})
\end{aligned}
$$

(IV) Heat absorbed in process $1 \rightarrow 2$

$$
\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}
$$

$$
\begin{aligned}
& =\frac{f}{2}\left(\mathrm{P}_{\mathrm{f}} \mathrm{~V}_{\mathrm{f}}-\mathrm{P}_{0} \mathrm{~V}_{0}\right)+\mathrm{W} \\
& =\frac{3}{2}\left(\mathrm{P}_{0} 2 \mathrm{~V}_{0}-\mathrm{P}_{0} \mathrm{~V}_{0}\right)+\mathrm{P}_{0} \mathrm{~V}_{0} \\
& =\frac{5}{2} \mathrm{P}_{0} \mathrm{~V}_{0} \\
& =\frac{5}{2}\left(\frac{\mathrm{RT}_{0}}{3}\right) \\
& \Delta \mathrm{Q}=\frac{5 \mathrm{RT}}{6} \Rightarrow(\mathrm{U})
\end{aligned}
$$

Q. 21 (D)

Process $1 \rightarrow 2$ is isothermal (temperature constant)
Process $2 \rightarrow 3$ is isochoric (volume constant)
(I) Work done in $1 \rightarrow 2 \rightarrow 3$
$\mathrm{W}=\mathrm{W}_{1 \rightarrow 2}+\mathrm{W}_{2 \rightarrow 3}$
$=\operatorname{nRT} \operatorname{In}\left(\frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}\right)+\mathrm{W}_{2 \rightarrow 3}$
$=\frac{\mathrm{RT}_{0}}{3} \operatorname{In}\left(\frac{2 \mathrm{~V}_{0}}{\mathrm{~V}_{0}}\right)+0$
$\mathrm{W}=\frac{\mathrm{RT}_{0}}{3} \mathrm{In} 2 \Rightarrow(\mathrm{P})$
(II) $\Delta \mathrm{U}$ in $1 \rightarrow 2 \rightarrow 3$
$\Delta \mathrm{U}=\frac{\mathrm{f}}{2} \mathrm{nR}\left(\mathrm{T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)$
$=\frac{3}{2} R\left(\mathrm{~T}_{0}-\frac{\mathrm{T}_{0}}{3}\right)$
$=\frac{3}{2} \mathrm{R}\left(\frac{2 \mathrm{~T}_{0}}{3}\right)$
$\Delta \mathrm{U}=\mathrm{RT}_{0} \Rightarrow(\mathrm{R})$
(III) For any system, first law of thermodynamics
for $1 \rightarrow 2 \rightarrow 3$
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\Delta \mathrm{Q}=\mathrm{RT}_{0}+\frac{\mathrm{RT}_{0}}{3} \operatorname{In} 2$
$\Delta \mathrm{Q}=\frac{\mathrm{RT}_{0}}{3}(3+\mathrm{In} 2) \Rightarrow(\mathrm{T})$
(IV) For process $1 \rightarrow 2$ (isothermal)

$$
\begin{aligned}
& \Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W} \\
& =\frac{\mathrm{f}}{2} \mathrm{nR}\left(\mathrm{~T}_{\mathrm{f}}-\mathrm{T}_{\mathrm{i}}\right)+\mathrm{nRT} \operatorname{In}\left(\mathrm{~V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{i}}\right) \\
& =0+\mathrm{R}\left(\frac{\mathrm{~T}_{0}}{3}\right) \operatorname{In}\left(\frac{2 \mathrm{v}_{0}}{\mathrm{v}_{0}}\right)
\end{aligned}
$$

$\Delta \mathrm{Q}=\frac{\mathrm{RT}_{0}}{3} \operatorname{In} 2 \Rightarrow(\mathrm{P})$
Q. 22 (1.77 to 1.78)

$\frac{\mathrm{P}_{1}}{4}\left(4 \mathrm{~V}_{1}\right)^{5 / 3}=\mathrm{P}_{2}\left(32 \mathrm{v}_{1}\right)^{5 / 3}$
$\mathrm{P}_{2}=\frac{\mathrm{P}_{1}}{4}\left(\frac{1}{8}\right)^{5 / 3}=\frac{\mathrm{P}_{1}}{128}$
$\mathrm{W}_{\mathrm{adi}}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\mathrm{P}_{2} \mathrm{~V}_{2}}{\gamma-1}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1}-\frac{\mathrm{P}_{1}}{128}\left(32 \mathrm{~V}_{1}\right)}{\frac{5}{3}-1}$
$=\frac{P_{1} V_{1}(3 / 4)}{2 / 3}=\frac{9}{8} P_{1} V_{1}$
$\mathrm{W}_{\text {iso }}=\mathrm{P}_{1} \mathrm{~V}_{1} \ln \left(\frac{4 \mathrm{~V}_{1}}{\mathrm{~V}_{1}}\right)=2 \mathrm{P}_{1} \mathrm{~V}_{1} \ln 2$
$\frac{\mathrm{W}_{\text {iso }}}{\mathrm{W}_{\text {adio }}}=\frac{2 \mathrm{P}_{1} \mathrm{~V}_{1} \ln 2}{\frac{9}{8} \mathrm{P}_{1} \mathrm{~V}_{1}}=\frac{16}{9} \ln 2=\mathrm{f} \ln 2$
$\mathrm{f}=\frac{16}{9}=1.7778 \approx 1.78$
Q. 23 (6)

Assuming temperature remains constant at 300 K
FromP $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\frac{\mathrm{P}_{1}\left(\frac{\mathrm{~V}_{0}}{2}\right)}{\mathrm{T}}=\frac{\mathrm{P}_{1}^{\prime}\left(\frac{\mathrm{V}_{0}}{2}-\mathrm{Ax}\right)}{\mathrm{T}}$

$\left(\mathrm{p}_{1}^{\prime}-\mathrm{P}_{2}^{\prime}\right) \mathrm{A}=\mathrm{mg}$
$\left[\frac{P_{1}\left(\frac{V_{0}}{2}\right)}{\frac{V_{0}}{2}-A x}-\frac{P_{2}\left(\frac{V_{0}}{2}\right)}{\frac{V_{0}}{2}+A x}\right] A=m g$
$\mathrm{nRT}\left[\frac{1}{4-\mathrm{x}}-\frac{1}{4+\mathrm{x}}\right]=\mathrm{mg}$
$(0.1)(8.3)\left[\frac{4+x-4+x}{16-x^{2}}\right]=m g$
$3\left(\frac{2 x}{16-x^{2}}\right)=1$
$6 x=16-x^{2}$
$x^{2}+6 x-16=0$
$x=2$
distance $=4+2=6 \mathrm{~m}$
Q. 24 (2.05)
$\mathrm{W}=(\Delta \mathrm{P})_{\text {avg }} \times 4 \pi \mathrm{R}^{2} \mathrm{a}$
$=\left|\frac{\mathrm{dP}}{2} .4 \pi \mathrm{R}^{2} \mathrm{a}\right|$
$\left\{\right.$ for small change $\left.(\Delta \mathrm{P})_{\text {avg }}<\mathrm{P}\right\rangle$ arithmetic mean $\}$
$=P V^{\gamma}=c \Rightarrow d P=-\gamma \frac{P}{V} d V=-\frac{\gamma P_{0}}{V} 4 \pi R^{2} a$
$=\frac{\gamma \mathrm{P}_{0}}{2 \mathrm{~V}} \times 4 \pi \mathrm{R}^{2} \mathrm{a} \times 4 \pi \mathrm{R}^{2} \mathrm{a}$
$=\frac{\gamma \mathrm{P}_{0}}{2 \times 4 \pi \mathrm{R}^{3}} 4 \pi \mathrm{R}^{2} \mathrm{a} \times 4 \pi \mathrm{R}^{2} \mathrm{a}$
$=\left(4 \mathrm{pRP} \times \mathrm{a}^{2}\right) \frac{3 \gamma}{2}$
$\therefore \mathrm{x} \simeq 2.05$
Q. 25 (C)

Process 1

$\mathrm{P}=$ constant, Volume increases and temperature also increases
$\Rightarrow \mathrm{W}=$ positive , $\Delta \mathrm{U}=$ positive
\Rightarrow Heat is positive and supplied to gas

Process 2

$\mathrm{V}=$ constant, Pressure decrease
\Rightarrow Temperature decreases
$\mathrm{W}=\int \mathrm{pdV}=0$
ΔT is negative and $\Delta U=\frac{f}{2} n R \Delta T$
$\Rightarrow \Delta \mathrm{U}$ in negative
$\Delta \mathrm{Q}=\Delta \mathrm{U}+\mathrm{W}$
$\therefore \Delta \mathrm{Q} \rightarrow$ Heat is negative and rejected by gas

Process 3

$\mathrm{P}=$ constant, Volume decreases
\Rightarrow Temperature also decreases
$\mathrm{W}=\mathrm{P} \Delta \mathrm{V}=$ negative
$\Delta \mathrm{U}=\frac{\mathrm{f}}{2} \mathrm{nR} \Delta \mathrm{T}=$ negative
$\Delta \mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}=$ negative
Heat is negative and rejected by gas.

Process 4

$\mathrm{V}=$ constant, Pressure increases
$\mathrm{W}=\int \mathrm{pdV}=0$
$\mathrm{PV}=\mathrm{nRT} \Rightarrow$ Temperature increase
$\Delta U=\frac{\mathrm{f}}{2} n R \Delta T$ is positive
$\Delta \mathrm{Q}=\mathrm{W}+\Delta \mathrm{U}=$ positive
Ans (C) step 1 and step 4
Q. 26 (A)
Q. 27 (B)

Elasticity and Thermal Expansion

EXERCISES-I

ELEMENTRY

Q. 1

Q. 2
$l=\frac{\mathrm{FL}}{\mathrm{AY}} \Rightarrow l \propto \frac{\mathrm{~L}}{\mathrm{~d}^{2}} \Rightarrow \frac{l_{1}}{l_{2}}=\frac{\mathrm{L}_{1}}{\mathrm{~L}_{2}} \times\left(\frac{\mathrm{d}_{2}}{\mathrm{~d}_{1}}\right)^{2}=\frac{1}{2} \times\left(\frac{1}{2}\right)^{2}=\frac{1}{8}$
Q. 3 (1)

Because due to increase in temperature intermolecular forces decreases.
Q. 4 (3)

Breaking Force \propto Area of cross section of wire $\left(\pi r^{2}\right)$ If radius of wire is double then breaking force will become four times.
Q. 5 (1)

In the region OA , stress \propto strain i.e. Hooke's law hold good.
Q. 6 (4)

As stress is shown on x-axis and strain on y-axis
So we can say that $Y=\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\text { slope }}$
So elasticity of wire P is minimum and of wire R is maximum
Q. 7 (2)
Q. 8
(3)
(2)

Angle of shear $\phi=\frac{\mathrm{r} \theta}{\mathrm{L}}=\frac{4 \times 10^{-1}}{100} \times 30^{\circ}=0.12^{\circ}$
Q. 10 (3)

Adiabatic elasticity $\mathrm{K} \alpha=\gamma \mathrm{P}$
Q. 11 (1)

Area of hysterisis loop gives the energy loss in the process of stretching and unstretching of rubber band and this loss will appear in the form of heating.

Q. 12 (4)

$\mathrm{U}=\frac{1}{2}\left(\frac{\mathrm{YA}}{\mathrm{L}}\right) l^{2} l . \quad \therefore \mathrm{U} \propto l^{2}$
$\frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}=\left(\frac{10}{2}\right)^{2}=25 \Rightarrow \mathrm{U}_{2}=25 \mathrm{U}_{1}$
i.e. potential energy of the spring will be 25 V
Q. 13 (1)

Energy per unit volume $=\frac{1}{2} \times \mathrm{Y} \times(\text { strain })^{2}$
\therefore strain $=\sqrt{\frac{2 \mathrm{E}}{\mathrm{Y}}}$
Q. 14 (3)
Q. 15 (4)

Increase in tension of wire $=$ YA $\alpha \Delta \theta$ $=8 \times 10^{-6} \times 2.2 \times 10^{11} \times 10^{-2} \times 10^{-4} \times 5=8.8 \mathrm{~N}$
Q. 16 (3)
$\mathrm{F}=\mathrm{YA} \alpha \Delta \mathrm{t}=2 \times 10^{11} \times 3 \times 10^{-6} \times 10^{-5} \times(20-10)=60 \mathrm{~N}$

JEE-MAIN

OBJECTIVE QUESTIONS
Q. 1 (1)
$\mathrm{d}=4 \mathrm{~mm}$
$\mathrm{Y}=9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$
$\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{Y} \frac{\Delta \ell}{\ell}$
$\mathrm{F}=\mathrm{AY} \frac{\Delta \ell}{\ell}=\pi\left(2 \times 10^{-3}\right)^{2} \times 9 \times 10^{9} \times \frac{1}{100}=\pi \times 4 \times 10^{-6} \times 9$
$\times 10^{7}=360 \pi \mathrm{~N}$
Q. 2 (3)
$\frac{F / A}{\Delta \ell / \ell}=Y$

$$
\begin{aligned}
& \frac{\mathrm{F}}{\Delta \ell}=\frac{\mathrm{Y} \pi \mathrm{r}^{2}}{\ell} \\
& \Rightarrow \frac{\mathrm{~F} \ell}{\mathrm{Y} \pi} \times \frac{1}{\Delta \ell}=\mathrm{r}^{2} \\
& \Rightarrow \mathrm{Y} \& \ell \text { are same for all then }
\end{aligned}
$$

For same load r $\alpha \frac{1}{\sqrt{\Delta \ell}}$
Q. 3 (3)

$$
\begin{aligned}
\mathrm{F} & =\eta \mathrm{A} \frac{\mathrm{x}}{\mathrm{~h}}=0.4 \times 10^{11} \times 1 \times .005 \times \frac{.02 \times 10^{-2}}{1} \\
& =4 \times 10^{4} \mathrm{~N}
\end{aligned}
$$

Q. 4 (3)
$\frac{\Delta V}{V}=\frac{\Delta \mathrm{P}}{\mathrm{B}}=\frac{1 \times 10^{5}}{1.25 \times 10^{11}}=8 \times 10^{-7}$
Q. 5 (3)

On heating volume of substance increases while mass of the substance remains the same. Hence the density will decrease
Q. 6 (4)
$K=\frac{A Y}{\ell}, K^{\prime}=\frac{4 A Y}{\ell / 2}=8 K$
$\frac{\mathrm{U}}{2}=\frac{\frac{1}{2} \times 8 \mathrm{~K} \times \Delta \ell^{2}}{\frac{1}{2} \times \mathrm{K} \times \Delta \ell^{2}} \Rightarrow \mathrm{U}=16 \mathrm{~J}$
Q. 7 (4)
$\mathrm{U}=\frac{1}{2}\left(\frac{\mathrm{YA}}{\mathrm{L}}\right) l^{2} l . \quad \therefore \mathrm{U} \propto l^{2}$
$\frac{\mathrm{U}_{2}}{\mathrm{U}_{1}}=\left(\frac{l_{2}}{l_{1}}\right)^{2}=\left(\frac{10}{2}\right)^{2}=25 \Rightarrow \mathrm{U}_{2}=25 \mathrm{U}_{1}$
i.e. potential energy of the spring will be 25 V
Q. 8 (3)

Given $\mathrm{L}=1 \mathrm{~mm}, \Delta \mathrm{~L}=6 \times 10^{-5} \mathrm{~mm}$
$\alpha=12 \times 10^{-6} \mathrm{k}^{-1}$
then
$\Delta \mathrm{L}=\mathrm{L} \alpha \Delta \mathrm{T}$
$6 \times 10^{-5} \mathrm{~mm}=(1 \mathrm{~mm})\left(12 \times 10^{-6}\right) \Delta \mathrm{T}$
$\Delta \mathrm{T}=5^{\circ} \mathrm{C}$
Q. 9 (1)

Given
$\mathrm{L}=25 \mathrm{~cm}, \mathrm{~A}=0.8 \times 10^{-4} \mathrm{~cm}^{2}$
$\Delta \mathrm{T}=10^{\circ} \mathrm{C}, \alpha=10^{-5} \mathrm{C}^{-1}, \mathrm{Y}=2 \times 10^{10} \mathrm{~N}^{2}$ then
$\frac{\Delta \mathrm{L}}{\mathrm{L}}=\alpha \Delta \mathrm{T}=\frac{\mathrm{F}}{\mathrm{AY}}$
$\mathrm{F}=\alpha \mathrm{AY} \Delta \mathrm{t}$
$=\left(10^{-5}\right)\left(0 \cdot 8 \times 10^{-4}\right) \times\left(2 \times 10^{10}\right) \times 10$
$=160 \mathrm{~N}$
Q. 10 (3)
$\mathrm{L}_{1}=\mathrm{L}+\mathrm{L} \alpha_{1} \Delta \mathrm{t}$
$\mathrm{L}_{2}=\mathrm{L}+\mathrm{L} \alpha_{2} \Delta \mathrm{t}$
$\frac{\text { Stress }_{1}}{\text { Stress }_{2}}=\frac{\mathrm{Y}_{1} \mathrm{~L} \alpha_{1} \Delta \mathrm{t}}{\mathrm{L}} \cdot \frac{\mathrm{L}}{\mathrm{Y}_{2} \mathrm{~L} \alpha_{2} \Delta \mathrm{t}}$
$1=\frac{2}{3} \frac{\mathrm{Y}_{1}}{\mathrm{Y}_{2}} \Rightarrow \frac{\mathrm{Y}_{1}}{\mathrm{Y}_{2}}=\frac{3}{2}$
Q. 11 (3)

$$
\begin{aligned}
& \mathrm{I}=\mathrm{CMR}^{2} \\
& \mathrm{dI}=2 \mathrm{CMRdR}=2 \mathrm{CMR}[\mathrm{R} \alpha \Delta \mathrm{~T}]=2 \alpha \mathrm{I} \Delta \mathrm{~T}
\end{aligned}
$$

Q. 12 (2)
$\mathrm{F}=\mathrm{AY} \frac{\Delta \mathrm{L}}{\mathrm{L}}=\mathrm{AY} \alpha \Delta \mathrm{T}$
$\mathrm{f}=\mathrm{K} \sqrt{\frac{\mathrm{F}}{\mu}}=\mathrm{K} \sqrt{\frac{\mathrm{AY} \alpha \Delta \mathrm{T}}{\rho A}}$
$\Rightarrow \mathrm{f} \alpha \sqrt{\frac{\mathrm{Y} \mathrm{\alpha}}{\rho}}$
Q. 13 (2)

We know that
$\mathrm{U}=\frac{1}{2} \times$ stress \times strain \times volume $=\frac{1}{2} \times Y(\text { strain })^{2}$
volume
$\mathrm{U}=\frac{1}{2} \mathrm{Y}(\alpha \Delta \mathrm{T})^{2} \mathrm{AL}$
$\mathrm{U} \propto \Delta \mathrm{T}^{2}$
$\mathrm{U} \propto(\mathrm{t}-20)^{2}$
Q. 14 (2)

$$
\frac{\Delta \mathrm{L}}{\mathrm{~L}}=\alpha \Delta \mathrm{t}=-\alpha 20
$$

means read more so actual is less
Q. 15 (2)

Given $\mathrm{L}=20 \mathrm{~cm}, \Delta \mathrm{~L}_{1}=0.075 \mathrm{~cm}, \Delta \mathrm{~L}_{2}=0.045 \mathrm{~cm}$
$\Delta \mathrm{L}=\mathrm{L} \alpha \Delta \mathrm{T}$

0.075	$=20 \alpha_{1}(100)$
0.045	$=20 \alpha_{2}(100)$

Let for third $\operatorname{rod} L_{1}$ and $L_{2}=20-L_{1}$

So $\Delta \mathrm{L}_{3} \quad=\Delta \mathrm{L}_{1}+\Delta \mathrm{L}_{2}$ $\Rightarrow 0.06$
100
$\mathrm{L}_{1} \quad=10 \mathrm{~cm}$.
Q. 16 (1)

Given
$\mathrm{f}=$ coafficient of cubical expansion

$$
\rho_{\text {Spere }}=\rho_{l}^{\prime}
$$

$\Rightarrow \frac{266.5}{\frac{4}{3} \pi\left(\frac{7}{2}\right)^{3}}=\frac{1.527}{1+35 \mathrm{f}}$
$\Rightarrow \mathrm{f}=8.3 \times 10^{-4} / \mathrm{c}$
Q. 17 (2)
$\mathrm{F}=\mathrm{A} \gamma \frac{\Delta \mathrm{L}}{\mathrm{L}(1+\alpha \Delta \mathrm{t})}$
$F=\frac{A \varepsilon \alpha t}{(1+\alpha t)}$
Q. 18 (1)

At $0^{\circ} \mathrm{C}$

then $\rho_{l} \mathrm{v}_{\mathrm{s}} \mathrm{g}$	$=\mathrm{W}_{0}$
$\ldots(1)$	$=\mathrm{W}$
At $\mathrm{t}^{\circ} \mathrm{C} \rho_{l}{ }^{\prime} \mathrm{v}_{\mathrm{s}}{ }^{\prime} \mathrm{g}$	$=\mathrm{m}$
$\ldots(2)$	

$$
\text { (2) }-(1) \Rightarrow\left(\rho_{l}^{\prime} \mathrm{V}_{\mathrm{s}}^{\prime}-\rho_{l} \mathrm{~V}_{\mathrm{s}}\right) \mathrm{g}=\mathrm{W}-\mathrm{W}_{0}
$$

$\mathrm{W}=\mathrm{W}_{0}+\left(\rho_{l}\left\{1-\gamma_{l} \mathrm{t}\right\} \mathrm{v}_{\mathrm{s}}\left(1+\gamma_{\mathrm{s}} \mathrm{t}\right)-\rho_{l} \mathrm{v}_{\mathrm{s}}\right) \mathrm{g}$
$=W_{0}\left[1-\left(\gamma_{l}-\gamma_{s}\right) t\right]$
Q. 19 (1)
$\mathrm{V}_{\ell}>\mathrm{V}_{\mathrm{e}}$
$\gamma>3 \alpha$.
Q. 20 (3)
$\ell_{1}\left(1+\alpha_{1} \Delta \mathrm{~T}\right)+\ell_{2}\left(1+\alpha_{2} \Delta \mathrm{~T}\right)=\ell_{\mathrm{f}}$ $\ell_{\mathrm{f}}=\ell_{1}+\ell_{2}+\left(\ell_{1} \alpha_{1}+\ell_{2} \alpha_{2}\right) \Delta \mathrm{T}$
$\ell_{\mathrm{f}}=\left(\ell_{1}+\ell_{2}\right)\left(1+\frac{\ell_{1} \alpha_{1}+\ell_{2} \alpha_{2}}{\ell_{1}+\ell_{2}} \Delta \mathrm{~T}\right)$
Q. 21 (3)
$\alpha_{x}+\alpha_{y}$ for $\mathrm{x}-\mathrm{y}$ plane
$\beta_{\text {CDEH }}=3 \times 10^{-5}$ per $^{\circ} \mathrm{C}$
Q. 22 (4)
$\gamma_{\text {oil }}=\gamma_{\text {vessel }} \Rightarrow$ D.
Volume increases but mass remains same.
Q. 23 (3)
$\because \gamma_{\mathrm{m}}<\gamma_{\mathrm{A} l}$
$\Delta \mathrm{V}_{\mathrm{m}}<\Delta \mathrm{V}_{\mathrm{al}}$
$\Delta \rho_{\mathrm{m}}<\Delta \rho_{\mathrm{A} l}$ mass of alchol is less]
$\rho_{\mathrm{m}} \gg \rho_{\mathrm{ac}}$ So completely Immersed
So $\mathrm{W}_{2}>\mathrm{W}_{1}[\because$ Displaced
Q. 24 (3)
$\mathrm{P} \Delta \mathrm{V}=\mathrm{nR} \Delta \mathrm{T}$
$\Delta V=\frac{\mathrm{nR}}{\mathrm{P}} \Delta \mathrm{T}$
$\Delta \mathrm{V}=\frac{\mathrm{V}}{\mathrm{T}} \Delta \mathrm{T}$
So , $\gamma=\frac{1}{\mathrm{~T}}$
Q. 25 (4)

Initially $\rho_{\mathrm{s}} \rho_{l}$ and V density of sphere, density of liquid and volume.

$$
\begin{aligned}
& \frac{B_{T}^{\prime}-B_{T}}{B_{T}} \times 100=\frac{V_{s}^{\prime} \rho_{l}^{\prime} g-V_{s} \rho_{l} g}{V_{s} \rho_{l} g} \times 100 \Rightarrow\left[\left(1+\gamma_{s} \Delta t\right)(1\right. \\
& \left.\left.-\gamma_{l} \Delta t\right)-1\right] \times 100 \\
& \quad=-0.05 \text { (decreases) }
\end{aligned}
$$

Q. 26 (2)
$\frac{\Delta \mathrm{L}}{\mathrm{L}} \times 100=1=100 \alpha \Delta \mathrm{t}=100 \alpha\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)$
$\frac{\Delta \mathrm{A}}{\mathrm{A}} \times 100=200 \alpha \Delta \mathrm{t}=2 \%$
Q. 27 (3)
$\Delta \mathrm{L}=\Delta \mathrm{L}_{1}+\Delta \mathrm{L}_{2}$
$(3 \mathrm{~L}) \alpha_{\text {net }} \Delta \mathrm{t}=\mathrm{L} \alpha \Delta \mathrm{t}=(2 \mathrm{~L})(2 \alpha) \Delta \mathrm{t}$
$\alpha_{\text {net }}=\frac{\alpha+4 \alpha}{3}=\frac{5 \alpha}{3}$
Q. 28 (3)
V_{m} denote volume of murcury
$\mathrm{V}_{\text {air }}=\mathrm{V}_{\text {flask }}-\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\text {flask }}-\mathrm{V}_{\mathrm{m}}$,
$\mathrm{V}_{\text {flask }}-300=\mathrm{V}_{\text {flask }}\left[1+3 \times\left(9 \times 10^{-6}\right) \Delta \mathrm{t}\right]-300\left[1+8 \times 10^{-}\right.$
$\left.{ }^{4} \Delta t\right]$
$\mathrm{V}_{\text {flask }}=\frac{\left(300 \times 1.8 \times 10^{-4}\right)}{27 \times 10^{-6} \Delta \mathrm{t}} \Delta \mathrm{t}=2000 \mathrm{~cm}^{3}$
Q. 29 (3)
$\left.\begin{array}{ll}\text { Given } & \gamma_{l}-\gamma_{c}=\mathrm{c} \\ \text { and } & \gamma_{l}-\gamma_{c}=\mathrm{s}\end{array}\right] \Rightarrow \gamma_{\mathrm{s}}=\mathrm{c}+\gamma_{\mathrm{c}}-\mathrm{s}=3 \alpha_{\mathrm{s}}$
$\alpha_{\mathrm{s}}=\frac{\mathrm{c}+\gamma_{\mathrm{c}}-\mathrm{s}}{3}$
Q. 30 (3)
$\rho_{0^{\circ} \mathrm{C}} \mathrm{h}_{1} \mathrm{~g}=\rho_{30^{\circ} \mathrm{C}} \mathrm{h}_{2} \mathrm{~g}$
$\rho_{0}(120)=\rho_{0}(1-\gamma 30)(124)$
$\gamma=\left(1-\frac{120}{124}\right) \frac{1}{30}=11 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Q. 31 (1)

On heating the expansion will take place hence both the distances will increase.
Q. 32 (4)
at $0^{\circ} \mathrm{C}$

$$
\mathrm{V}_{0 \mathrm{x}}=20 \mathrm{~A} ; \quad \mathrm{V}_{0 \mathrm{y}}=30 \mathrm{~A}
$$

Now at time T y read $120^{\circ} \mathrm{C}$
So. $\mathrm{V}^{\prime}{ }_{0 y}=\mathrm{A}(120)=30 \mathrm{~A}\left(1+\gamma_{\mathrm{m}} \mathrm{T}\right)$
and $\mathrm{V}_{0 \mathrm{x}}^{\prime}=\mathrm{Ah}=20 \mathrm{~A}\left(1+\gamma_{\mathrm{m}} \mathrm{T}\right)$
Dividing $\frac{120}{\mathrm{~h}}=\frac{30}{20}$
$\Rightarrow \mathrm{h}=80$.

JEE-ADVANCED

OBJECTIVE QUESTIONS
Q. 1 (A)

$L_{a}=\frac{W L}{Y A}$

$$
\mathrm{L}_{\mathrm{w}}=\frac{\left[\mathrm{W}-\frac{\mathrm{W}}{\rho_{o}} \rho_{\mathrm{W}}\right] \mathrm{L}}{\mathrm{YA}}
$$

$=\frac{W\left[1-\frac{\rho_{w}}{\rho_{0}}\right] L}{Y A}$
$\frac{L_{a}}{L_{w}}=\left[1-\frac{\rho_{w}}{\rho_{o}}\right] \Rightarrow \frac{\rho_{o}}{\rho_{w}}=\frac{L_{a}}{L_{a}-L_{w}}$
Q. 2 (A)
$\frac{F}{A}=\eta \frac{x}{h}$
$\frac{500}{4 \times 16 \times 10^{-4}}=2 \times 10^{6} \frac{x}{4 \times 10^{-2}}$
$\Rightarrow \mathrm{x}=\frac{5 \times 10^{-2}}{32} \mathrm{~m}=0.156 \mathrm{~cm}$
Q. 3 (D)
depth $=200 \mathrm{~m}$
$\frac{\Delta \mathrm{V}}{\mathrm{V}}=\frac{0.1}{100}=10^{-3}$
density $=1 \times 10^{3}$
$\mathrm{g}=10$
$B=\frac{\Delta p}{\Delta v / v}=\frac{h g \rho}{\Delta v / v}$
$\Rightarrow B=200 \times 10 \times 10^{3} \times 1000=2 \times 10^{9}$
Q. 4 (B)
$\frac{r_{1}}{r_{2}}=b$
$\frac{\ell_{1}}{\ell_{2}}=\mathrm{a}$

$$
\frac{Y_{1}}{Y_{2}}=c
$$

$\Delta \ell_{1}=\frac{(3 \mathrm{mg}) \ell_{1}}{A_{1} Y_{1}}$
$\Delta \ell_{2}=\frac{(2 m g) \ell_{2}}{A_{2} Y_{2}}$
$\frac{\Delta \ell_{1}}{\Delta \ell_{2}}=\frac{3 \ell_{1}}{2 \ell_{2} A_{1} Y_{1}} \times A_{2} Y_{2}=\frac{3}{2} \frac{a}{b^{2} c}=\frac{3 a}{2 b^{2} c}$
Q. 5 (C)
$\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{Y} \frac{\Delta \ell}{\ell}$
If $\quad \mathrm{Y} \& \frac{\Delta \ell}{\ell}$ are constant.
$\mathrm{F}=\mathrm{AY} \frac{\Delta \ell}{\ell}$
$\Rightarrow \mathrm{F} \propto \mathrm{A} ; \Rightarrow \mathrm{F}^{\prime}=4 \mathrm{~F}$
Q. 6 (D)
$\ell_{\mathrm{B}}=2 \mathrm{~m}$
$\mathrm{A}_{\mathrm{B}}=2 \mathrm{~cm}^{2}$

$$
\ell_{\mathrm{S}}=\mathrm{L}
$$

$\mathrm{A}_{\mathrm{s}}=1 \mathrm{~cm}^{2}$
$\Delta \ell_{\mathrm{B}}=\Delta \ell_{\mathrm{S}}$
$\frac{F}{A_{B}} \frac{\ell_{B}}{Y_{B}}=\frac{F}{A_{S}} \frac{\ell_{S}}{Y_{S}}$
$L=\frac{A_{S} Y_{S}}{A_{B} Y_{B}} \ell_{B}=\frac{1}{2} \times \frac{2 \times 10^{11}}{1 \times 10^{11}} \times 2=2$
Q. 7 (D)
$\frac{r_{1}}{r_{2}}=\frac{1}{2}$
$\operatorname{PE}($ per unit volume $)=\frac{1}{2 Y}\left(\frac{F}{A}\right)^{2}$
$\mathrm{PE} \propto 1 / \mathrm{A}^{2}$

$$
\frac{P E_{1}}{P E_{2}}=\frac{A_{2}^{2}}{A_{1}^{2}}=16: 1
$$

Q. 8 (B)

Given volume at $0^{\circ} \mathrm{C}=\mathrm{V}_{0}$,
cofficient of Linear expansion $=\mathrm{a}_{8}$
cofficient of cubical expansion $={ }^{\mathrm{g}}{ }_{\mathrm{m}}$
$h=\frac{V_{m}{ }^{\prime}-V_{b}{ }^{\prime}}{A_{0}{ }^{\prime}}=\frac{V_{0}(1+\gamma \Delta T)-V_{0}\left(1+3 a_{g} \Delta T\right)}{A_{0}\left(1+2 a_{g} \Delta T\right)}$
$=\frac{V_{0} T\left(\gamma-3 a_{g}\right)}{A_{0}\left(1+2 a_{g} T\right)}$
Q. 9 (C)

Initially $P=\frac{V_{b} \rho_{b}}{A_{c}}, P^{\prime}=\frac{V_{b}^{\prime} \rho_{b}^{\prime}}{A_{c}^{\prime}}$
$P^{\prime}=\frac{V_{b}\left(1+10^{-3} \times 10\right)}{A_{c}\left(1+2 \times 10^{-3} \times 10\right)} \times \frac{\rho_{b}}{\left(1+10^{-3} \times 10\right)}$
$\mathrm{P}^{\prime}=\frac{\mathrm{P}}{1+2 \times 10^{-2}}$
$\left(\frac{P^{\prime}}{P}-1\right) \times 100=\frac{1-\left(1+2 \times 10^{-2}\right)}{1} \times 100=-2 \%$

Q. 10 (C)

$\mathrm{dx}=\Delta \mathrm{dx}$

$\int_{0}^{\Delta L} \Delta d x=\int_{0}^{L} d x(3 x+2) \times 10^{-6}(20-0)$
$\Delta L=\left(20 \times 10^{-6}\right)\left(\frac{3 x^{2}}{2}+2 x\right)_{0}^{L}$
$\Delta \mathrm{L}=\left(20 \times 10^{-6}\right)\left(\frac{3 \mathrm{~L}^{2}}{2}+2 \mathrm{~L}\right)=1.2 \mathrm{~cm}$
$\mathrm{L}_{\text {new }}=\mathrm{L}+\Delta \mathrm{L}$
Q. 11 (C)

Let eq ${ }^{\text {n }}$. temp $=t$ then

$$
\begin{align*}
& \begin{array}{ll}
\mathrm{m}_{\mathrm{R}} \mathrm{~s}_{\mathrm{R}} \mathrm{t}, & =\mathrm{m}_{\mathrm{s}} \mathrm{~s}_{\mathrm{s}}(100-\mathrm{t}) \\
& =\mathrm{d}_{\mathrm{s}}(1+\alpha \mathrm{t})
\end{array} \tag{1}\\
& \mathrm{d}_{\mathrm{R}}, \quad=\mathrm{d}_{\mathrm{R}}\left(1+\alpha_{\mathrm{R}} \mathrm{t}\right) \tag{2}\\
& =\mathrm{d}_{\mathrm{s}}\left[1-\alpha_{\mathrm{s}}(100-\mathrm{t})\right] \tag{3}\\
& \text { Now }{ }^{\text {d }} \text {, } \tag{4}\\
& =\mathrm{d}_{\mathrm{s}} \text {, } \\
& \text { So. } d_{R}\left(1+\alpha_{R} t\right) \quad=d_{s}\left[1-\alpha_{s}(100-t)\right] \\
& \mathrm{t}=\frac{\mathrm{d}_{\mathrm{s}}\left(1-\alpha_{\mathrm{s}} 100\right)-\mathrm{d}_{\mathrm{R}}}{\left[\mathrm{~d}_{\mathrm{R}} \alpha_{\mathrm{R}}-\mathrm{d}_{\mathrm{s}} \alpha_{\mathrm{s}}\right]}
\end{align*}
$$

Put the above value of t in eq. 1 .

$$
\left(\frac{m_{R} s_{R}}{m_{s} s_{s}}+1\right) \mathrm{t}=100 ; \quad \frac{\mathrm{m}_{\mathrm{s}}}{\mathrm{~m}_{\mathrm{r}}}=\frac{23}{54}
$$

Q. 12 (B)

$$
\begin{aligned}
& \mathrm{w}_{1}=\mathrm{Mg}-\mathrm{F}_{\mathrm{B}} \\
& \mathrm{w}_{2}=\mathrm{Mg}-\mathrm{F}_{\mathrm{B}}\left[\frac{1+\gamma_{\mathrm{m}} \Delta \mathrm{~T}}{1+\gamma_{\ell} \Delta \mathrm{T}}\right]=\mathrm{Mg}-\mathrm{F}_{\mathrm{B}}\left[1+\left(\gamma_{\mathrm{m}}-\gamma_{\ell}\right) \Delta \mathrm{T}\right]
\end{aligned}
$$

Since, $\gamma_{\mathrm{m}}<\gamma_{\ell}$
So, $\mathrm{w}_{2}>\mathrm{w}_{1}$.
Q. 13 (A)

At $40^{\circ} \mathrm{C}$
1 Unit will be $=1\left(1+\alpha_{s} \Delta t\right)$ units

$$
=1\left(1+12 \times 10^{-6} \times 40\right) \text { Units }
$$

So 100 Unit will be $=100\left(1+12 \times 10^{-6} \times 40\right)=$ Actual

$$
\begin{gathered}
100\left(1+40 \times 12 \times 10^{-6}\right)=l_{0}\left(1+\left(2 \times 10^{-6}\right) 40\right) \\
l_{0}=100\left[1+400 \times 10^{-6}\right]>100 \mathrm{~mm} .
\end{gathered}
$$

Q. 14 (B)

Given $\beta=1.4 \times 10^{11} \mathrm{~Pa}, \alpha=1.7 \times 10^{-50} \mathrm{C}^{-1}$
$\Delta \mathrm{T}=30^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \beta=-\frac{\Delta \mathrm{P}}{\Delta \mathrm{~V} / \mathrm{V}} \Rightarrow \Delta \mathrm{P}=-\beta \frac{\Delta \mathrm{V}}{\mathrm{~V}} \\
& \Delta \mathrm{P}=\beta(3 \alpha \Delta \mathrm{~T}) \\
& =1.4 \times 10^{11} \times 3 \times 1.7 \times 10^{-5} \times 10 \\
& =7.14 \times 10^{7} \mathrm{~Pa} .
\end{aligned}
$$

Q. 15 (C)

$\frac{\alpha_{1}}{\alpha_{2}}=\frac{2}{6}$
$\because \frac{\mathrm{F}}{\mathrm{A}}=\mathrm{Y} \alpha \Delta \theta \quad \because \Delta \theta$ is same for both
$\frac{\frac{F_{1}}{A_{1}}}{\frac{F_{2}}{A_{2}}}=\frac{Y_{1} \alpha_{1}}{Y_{2} \alpha_{2}}$

$$
\frac{Y_{1}}{Y_{2}}=\frac{\alpha_{2}}{\alpha_{1}}=3: 1
$$

Q. 16 (A,B)

On heating or cooling water from $4^{\circ} \mathrm{C}$ it expands in both cases.
Q. 17 (A)

In bimetallic strips the two metals have different thermal expansion coefficient. Hence on heating it bents towards the metal with lower thermal expansion coefficient.
Q. 18 (C)
$6 \times 10^{-5}=1 \times 12 \times 10^{-6} \times \Delta T$
$\frac{6 \times 10^{-5}}{12 \times 10^{-6}}=\Delta \mathrm{T} \Rightarrow \Delta \mathrm{T}=5^{\circ} \mathrm{C}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING

Q. $1 \quad$ (ABC)

Stress in wire $B=\frac{m g}{3 \pi r_{B}^{2}}$
Stress in wire $A=\frac{4 m g}{3 \pi r_{A}^{2}}$
if $\frac{\mathrm{mg}}{3 \pi r_{B}^{2}}=\frac{4 \mathrm{mg}}{3 \pi r_{A}^{2}}$ either wire will break.

Q. 2 (A,C,D)

Gravitational Potential Energy $\mathrm{U}_{\mathrm{G}}=\mathrm{Mgl}$
Elastic Potential Energy $\mathrm{U}_{\mathrm{e}}=\frac{1}{2}$ stress \times strain \times volume

$$
\begin{aligned}
& =\frac{1}{2} \frac{\mathrm{~F}}{\mathrm{~A}} \frac{\ell}{\ell_{0}} \times \mathrm{V} \left\lvert\, \begin{array}{l}
\mathrm{F}=\mathrm{mg} \\
\mathrm{~V}=\mathrm{A} \ell_{0}
\end{array}\right. \\
& =\frac{1}{2} \mathrm{mgl}
\end{aligned}
$$

Heat Produced $=\mathrm{U}_{\mathrm{e}}=\frac{1}{2} \mathrm{Mgl}$

Q. 3 (A,B,C,D)

On heating, every dimension increases.
Q.4. (BC)

Strain \rightarrow Same
Stress $=\frac{F}{A}=$ constant
$\mathrm{F} \propto \mathrm{A}$
$\Rightarrow \mathrm{F} \propto \mathrm{r}^{2}$
Energy $=\frac{1}{2}$ stress \times strain \times volume

$$
\propto \text { Area }
$$

$$
\propto \mathrm{r}^{2}
$$

Q. 5 (A, C, D)
(A) $\%$ rise in area $=\beta \Delta \mathrm{T} \quad=2(\alpha \Delta \mathrm{~T})$
$=2 \times 0.2=0.4 \%$
(C) $\%$ rise is volume $=3 \alpha \Delta \mathrm{~T}$

$$
=3 \times 0.2=0.6 \%
$$

(D) $\alpha=\frac{0.2}{80 \times 100}=0.25 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
Q. 6 (B)

Because floating

$$
\begin{aligned}
\rho_{\mathrm{s}} \mathrm{Vg} & =\rho_{\ell}\left(\frac{\mathrm{V}}{2}\right) \mathrm{g} \\
2 \rho_{\mathrm{s}} & =\rho_{\ell}
\end{aligned}
$$

Q. 7 (A) if $\gamma_{L}>\gamma_{S}$ then submerged more else come out of liquid respectively and $\gamma_{\mathrm{L}}>\gamma_{\mathrm{S}}$ (always)
Q. 8 (A)
$\mathrm{V}^{\prime}=\mathrm{V}\left[1+\gamma_{\mathrm{s}} \Delta \mathrm{t}\right]$
$\rho_{l}^{\prime}=\rho_{l}\left[1-\gamma_{l} \Delta t\right]$
$\rho_{l}\left(\frac{\mathrm{~V}}{2}\right) \mathrm{g}=\rho_{l}^{\prime}\left(\frac{\mathrm{V}^{\prime}}{2}\right) \mathrm{g}$
$\rho_{l}\left(\frac{\mathrm{~V}}{2}\right) \mathrm{g}=\rho_{l}\left(1-\gamma_{l} \Delta \mathrm{t}\right)\left(\frac{\mathrm{V}}{2}\right)\left(1+\gamma_{\mathrm{s}} \Delta \mathrm{t}\right) \mathrm{g}$
$\left(1-\gamma_{l} \Delta \mathrm{t}\right)\left(1+\gamma_{\mathrm{s}} \Delta \mathrm{t}\right)=1$
$\left(1-\gamma_{l} \Delta \mathrm{t}\right)\left(1+3 \alpha_{\mathrm{s}} \Delta \mathrm{t}\right)=1$
$3 \alpha_{\mathrm{s}}-\gamma_{l}=0$
Q. 9 (A)
initially $\rho_{l}\left(A_{s} h\right) g=\left(\rho_{s} A_{s} h_{o}\right) g$
...(1)
Now $\rho_{1}{ }^{\prime}\left(A_{\mathrm{s}}{ }^{\prime} h\right) g=\left(\rho_{\mathrm{s}}{ }^{\prime} \mathrm{A}_{\mathrm{s}}{ }^{\prime} \mathrm{h}_{\mathrm{o}}{ }^{\prime}\right) \mathrm{g}$
...(2)
$\rho_{l}\left(1-\gamma_{l} \Delta \mathrm{t}\right) \mathrm{h}=\rho_{\mathrm{s}}\left(1-3 \alpha_{\mathrm{s}} \Delta \mathrm{t}\right) \mathrm{h}_{\mathrm{o}}\left(1+\alpha_{\mathrm{s}} \Delta \mathrm{t}\right)$ $\gamma_{\mathrm{L}}=2 \alpha_{\mathrm{s}}$
Q. 10 (A) $\rho_{l}{ }^{\prime}<\mathrm{r}_{\mathrm{s}}$ or $\frac{\rho_{l}}{2}$
$\frac{\rho_{l}}{1+\gamma_{l} \Delta \mathrm{t}}<\frac{\rho_{l}}{2}$
$1+\gamma_{l} \Delta \mathrm{t}>2$
$\Delta \mathrm{t}>\frac{1}{\gamma_{1}}$
$\mathrm{T}_{\mathrm{F}}-\mathrm{T}>\frac{1}{\gamma_{l}}$
$\Rightarrow \mathrm{T}_{\mathrm{F}}>\mathrm{T}+\frac{1}{\gamma_{l}}$
$\mathrm{K}_{\mathrm{eq}}=\frac{2 \times 10^{6} \times 10^{6}}{3 \times 10^{6}}=\frac{2}{3} \times 10^{6}$
$\omega=\sqrt{\frac{2 \times 10^{6}}{3 \times 600}}=\frac{100}{3}$
Q. 15 (B)

Total weight $=1000+\mathrm{w}$
weight on each rod $=\frac{1000+w}{4}$
stress $=\frac{1000+w}{4 \times 4 \times 10^{-4}}=9 \times 10^{6}$
$\Rightarrow \quad \mathrm{w}=14400-1000=13400 \mathrm{~N}$
No. of persons are $=\frac{1340}{50}=26$
Q. 16 (A) p (B) q; (C) r; (D) q loss in $\mathrm{PE}=\mathrm{Mg} \ell$
$\Delta \ell=\ell \quad \mathrm{L}$

Elastic PE $=\frac{1}{2} K x^{2}$
$=\frac{1}{2} \frac{\mathrm{Mg}}{\mathrm{A}} \times \frac{\ell}{\mathrm{L}} \mathrm{xAL}$
$=\mathrm{MgL} / 2$

Heat $=\mathrm{MgL}-\mathrm{Mg} \mathrm{L} / 2$
$=M g L / 2$
Q. 17 (A) - (r) ; (B) - (q) ; (C) - (p) ; (D) - (s)
Q. 18 (A) - (p) ; (B) - (r) ; (C) - (s) ; (D) - (q)
(A) Buoyant force $=\mathrm{Mg}=$ constant $=\mathrm{V}_{\text {sub }} \rho_{\ell} \times \mathrm{g}$
$V_{\text {sub }}=\frac{M g}{\rho_{\ell} g}$.
volume of displace fluid $=$ constant
\therefore density of fluid must be constant.
(B) $\left(\mathrm{V}_{\text {solid }}-\mathrm{V}_{\text {sub }}\right)=$ constant
$\Rightarrow \quad\left(V_{\text {solid }}-\frac{M_{\text {solid }}}{\rho_{\text {liquid }}}\right)=$ constant
$\mathrm{V} \times 3 \alpha \times \Delta \mathrm{T}=\frac{\mathrm{M} \gamma \Delta \mathrm{T}}{\mathrm{d}}$
$\Rightarrow \gamma=3 \alpha \frac{d}{\rho}$
(C) $A h_{\text {in }} \mathrm{d}_{\text {liquid }}=\mathrm{A}\left(\mathrm{h}_{\text {in }}+\mathrm{h}_{\text {out }}\right) \rho_{\text {solid }}=\mathrm{M}$ (mass of solid)

$$
h_{\text {out }}=\frac{M}{A \rho_{\text {solid }}}-h_{\text {in }}=\frac{M}{A \rho_{\text {solid }}}-\frac{M}{A d_{\text {liquid }}}=
$$

constant

$$
\begin{aligned}
& \frac{M(1+3 \alpha \Delta T)}{A(1+2 \alpha \Delta T) \rho}-\frac{M(1+\gamma \Delta T)}{A(1+2 \alpha \Delta T) d}=\frac{M}{A \rho}-\frac{M}{A d} \\
& \gamma=2 \alpha+\alpha \frac{d}{\rho}
\end{aligned}
$$

(D) $\mathrm{Ah}_{\mathrm{in}} \mathrm{d}_{\text {liquid }} \mathrm{g}=$ Buoyant force $=$ constant $=\mathrm{Mg}$

$$
\begin{aligned}
& A_{0}(1+2 \alpha \Delta T) h_{\text {in }} \frac{d}{1+\gamma \Delta T}=\text { constant } \\
& h_{\text {in }}=\frac{M}{A_{0} d}(1+(\gamma-2 \alpha) \Delta T) \\
& \gamma=2 \alpha
\end{aligned}
$$

NUMERICAL VALUE BASED

Q. 1 [250]

$\frac{\Delta l}{l}=\frac{\pi \times 0.05}{\pi \times 40}=\frac{1}{800}$
$\mathrm{T}=\mathrm{Y} \frac{\Delta l}{l} \times \mathrm{A}=200 \times 10^{9} \times \frac{1}{800} \times 1 \times 10^{-6}$
$=250 \mathrm{~N}$
Q. 2 [1000]

Decrease in temperature would cause shrinking of wire, as wire is attached at 2 ends, this would result in tension (stress) in wire.
$\alpha=2 \times 10^{-6}$
$\frac{\mathrm{F}}{\mathrm{A}}=\frac{\Delta \ell}{\ell}$

$$
\begin{gathered}
\frac{\Delta \ell}{\ell}=\frac{2.2 \times 10^{8}}{1.1 \times 10^{11}}=2 \times 10^{-3} \\
\frac{\Delta \ell}{\ell}=\alpha \Delta \mathrm{T}=\left(2 \times 10^{-3}\right)=\left(2 \times 10^{-6}\right)(\Delta \mathrm{T}) \\
\Delta \ell=1000^{\circ} \mathrm{C}
\end{gathered}
$$

Q. 3 [500]

Temp. is increased by $\Delta \theta$ then

$$
\Delta l=l \alpha \Delta \theta
$$

$\Rightarrow \quad \Delta \theta=\frac{\Delta l}{l \alpha}$
$\mathrm{E}_{1}=(\rho \mathrm{A} l) \mathrm{S} \Delta \theta=\rho \mathrm{A} l \mathrm{~S} \frac{\Delta l}{l \alpha}$
when stretched, Stress $=\mathrm{Y} \frac{\Delta l}{l}$
$\mathrm{E}_{2}=\frac{1}{2}\left(\mathrm{Y} \frac{\Delta l}{l}\right)\left(\frac{\Delta l}{l}\right) \times \mathrm{Al}=\frac{\mathrm{Y}(\Delta l)^{2} \mathrm{~A}}{2 l}$
So, $\frac{\mathrm{E}_{1}}{\mathrm{E}_{2}}=\frac{\rho \mathrm{AlS} \Delta l \times 2 l}{l \times \mathrm{Y}(\Delta l)^{2} \mathrm{~A}}=\frac{2 \rho S l}{\alpha(\Delta l) \mathrm{Y}}=500$

Q. $4 \quad$ [0012]

Q. 5
[5]
At equilibrium
$2 \mathrm{~T} \sin \theta=\mathrm{mg}$
$\Rightarrow 2$. $\left(\frac{Y A}{2 a}\right) \times \sin \theta \cdot \sin \theta=m g$
$\Rightarrow \frac{Y A}{a} x \cdot \frac{x^{2}}{a^{2}}=m g$
$\Rightarrow \mathrm{x}=\left\{\frac{\mathrm{a}^{3} \mathrm{mg}}{\mathrm{YA}}\right\}^{\frac{1}{3}}=\left\{\frac{1 \mathrm{~m} \times 5 \mathrm{~kg} \times 10 \mathrm{~m} / \mathrm{s}^{2}}{\left(2.4 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right) \times 10^{-4} \mathrm{~m}^{2}}\right\}^{\frac{1}{3}}$
$=5 \mathrm{~cm}$
Q. 6 [2]
$\Delta \ell=\frac{\mathrm{F} \ell}{\Delta \mathrm{y}}$
$\frac{\Delta \ell}{\mathrm{F} / \mathrm{A}}=\frac{\ell}{\mathrm{y}}$
$y=\frac{4000 \times 10^{3}}{2 \times 10^{-3}}=2 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
Q. 7 [4]

Stress $=\frac{40}{10^{-3}}=4 \times 10^{4} \mathrm{~N} / \mathrm{m}$
Q. 8 [1]
$\left(\frac{\Delta \mathrm{L}}{\mathrm{L}}\right)_{\mathrm{S}}=\frac{\mathrm{T}_{\mathrm{S}}}{\mathrm{A}_{\mathrm{S}} \mathrm{Y}_{\mathrm{S}}}$
$\left(\frac{\Delta L}{L}\right)_{B}=\frac{T_{S}}{A_{B} Y_{B}}$
strain equal
$\frac{T_{S}}{A_{S} Y_{S}}=\frac{T_{B}}{A_{B} Y_{B}}$
$\Rightarrow \frac{\mathrm{T}_{\mathrm{S}}}{0.1 \times 2 \times 10^{11}}=\frac{\mathrm{T}_{\mathrm{B}}}{0.2 \times 1 \times 10^{11}}$
$\mathrm{T}_{\mathrm{S}}=\mathrm{T}_{\mathrm{B}}$
Take torque absent O
$\mathrm{T}_{\mathrm{S}} \times \mathrm{x}=\mathrm{T}_{\mathrm{B}}(200-\mathrm{x})$
$\mathrm{x}=100 \mathrm{~cm}$
Q. 9 [3]

Let us calculate elongation (ξ) in part length x from lower side.
$\mathrm{F}=\frac{\mathrm{mg}}{\mathrm{L}} \mathrm{x}$
Stress $=\frac{m g}{A L} \mathrm{x}$
$\operatorname{Strain} \frac{\mathrm{d} \xi_{\mathrm{x}}}{\mathrm{dx}}=\frac{\mathrm{mg}}{\mathrm{YAL}} \mathrm{x}$ $\int_{0}^{\xi_{x}} \mathrm{~d} \xi_{x}=\frac{m g}{\operatorname{YAL}} \int_{0}^{x} x d x$
$\xi_{x}=\frac{\mathrm{mg}}{2 \mathrm{YAL}} \mathrm{x}^{2}$
$\frac{\xi_{\text {upper half }}}{\xi_{\text {lowerhalf }}}=\frac{\frac{\mathrm{mg}}{2 \mathrm{YAl}}\left\{\mathrm{L}^{2}-\left(\frac{\mathrm{L}}{2}\right)^{2}\right\}}{\frac{\mathrm{mg}}{2 \mathrm{YAl}}\left(\frac{\mathrm{L}}{2}\right)^{2}}=\frac{3}{1}$.
Q. 10 [10000]

$$
\begin{aligned}
\mathrm{F} & =\operatorname{Ay} \frac{\Delta \ell}{\ell} \\
& =\operatorname{Ay} \alpha \Delta \theta=10^{-3} \times 10^{11} \times 10^{-6}\left(100-0^{\circ}\right) \\
& =10000 \mathrm{~N}
\end{aligned}
$$

KVPY

PREVIOUS YEAR'S

Q. 1 (A)

Will increases by an amount d $\alpha \Delta \mathrm{T}$
Q. 2 (A)
Q. 3 (D)

Increase in length of each liquid is same.
$\Delta \ell=\Delta \ell$
$\frac{\Delta \mathrm{V}_{\mathrm{Hg}}}{\pi \mathrm{d}_{1}^{2}}=\frac{\Delta \mathrm{V}_{\text {Bromine }}}{\pi \mathrm{d}_{2}^{2}}$
$\frac{(\mathrm{V}) \gamma_{\mathrm{Hg}} \Delta \theta}{\pi \mathrm{d}_{1}^{2}}=\frac{\Delta \mathrm{V} \gamma_{\text {Brominin }} \Delta \theta}{\pi \mathrm{d}_{2}^{2}}$
$\left(\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}\right)^{2}=\frac{\gamma_{\mathrm{Hg}}}{\gamma_{\text {Bromine }}}=\frac{18 \times 10^{-5}}{108 \times 10^{-5}}$
$\frac{\mathrm{d}_{1}}{\mathrm{~d}_{2}}=\sqrt{\frac{1}{6}} \simeq 0.4$
Q. 4 (C)

When some boyd is constrained from expanding or bending then on heating thermal stress get develop in the body.
Stress $=\mathrm{Y} \alpha \Delta \mathrm{T}$
$=2 \times 10^{11} \times 1.1 \times 10^{-5} \times(40-25)=3.3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
$=3.3 \times 10^{7} \mathrm{~Pa}$
Q. 5 (A)

Initially wire is slack so it do not have any deformation energy. When block is given some velocity it move due to kinetic energy, one wire get taut. Internal force get develop in wire and KE start decreases and deformation energy of wire increase. Till block come at rest using energy conservation
$\frac{1}{2} \mathrm{~m} \nu^{2}=\frac{1}{2} \mathrm{Y} \times(\text { strain })^{2} \times \mathrm{A} \times \mathrm{L}$ $\frac{1}{2} \mathrm{~m} v^{2}=\frac{1}{2} \mathrm{Y} \times\left(\frac{\mathrm{x}}{\mathrm{L}}\right)^{2} \times \mathrm{A} \times \mathrm{L}$
$\mathrm{x}=v \sqrt{\frac{\mathrm{~mL}}{\mathrm{AY}}}$
Q. 6 (D)
high density is not the reason for its uses in clinical thermometers.
Q. 7 (B)

Thermal expansion of a solid is due to asymmetric characteristic of inter atomic potential energy curve of the solid.
(A)

Since when temperature of water rises from $0^{\circ} \mathrm{C}$ to 10 ${ }^{\circ} \mathrm{C}$, its density first increase, becomes maximum at $4^{\circ} \mathrm{C}$ and then decreases, therefore fractional submergence will first decrease and then increase.
Q. 9

$$
\begin{aligned}
& A_{1} v_{1}=A_{2} v_{2} \\
& \left(4 \pi R^{2}\right) v=\left(4 \pi x^{2}\right) v_{x} \\
& v_{x}=\frac{R^{2}}{x^{2}} \cdot v
\end{aligned}
$$

so small kinetic energy at x for width $\mathrm{d} \mathrm{x}=\mathrm{dk}=\frac{1}{2} \mathrm{dm}\left(\mathrm{v}_{\mathrm{x}}{ }^{2}\right)$
$\mathrm{dk}=\frac{1}{2}\left[\rho\left(4 \pi \mathrm{x}^{2} \mathrm{dxx}\right) \mathrm{v}_{\mathrm{x}}{ }^{2}\right]$

$$
=\frac{1}{2} \rho^{4} \pi x^{2}\left(\frac{\mathrm{R}^{2}}{\mathrm{x}^{2}} \mathrm{v}\right)^{2} \mathrm{dx}
$$

Total kinetic energy

$$
k=\int d k=2 \rho \pi R^{4} v^{2} \int_{R}^{\infty} \frac{d x}{x^{2}}
$$

$$
\mathrm{k}=2 \rho \pi \mathrm{R}^{4} \mathrm{v}^{2}\left[-\frac{1}{\mathrm{x}}\right]_{\mathrm{R}}^{\infty}=2 \rho \pi \mathrm{R}^{3} \mathrm{v}^{2}
$$

Q. 10 (B)

Volume of water received from rain $=$
$V=600 \times 10^{6} \times 2.4 \times \frac{10}{100}$

$$
\mathrm{V}=1440 \times 10^{5} \mathrm{~m}^{3}
$$

$\%$ of needed water $=\frac{1440 \times 10^{5}}{1.4 \times 10^{12}} \times 100 \approx 10 \%$
Q. 11 (A)

$\mathrm{P}=$ Pressure on upper surface of window

$$
=\mathrm{P}_{0}+\rho g h
$$

Pin $=$ Pressure inside the submarine
$=\mathrm{P}_{0}$
Net force $=\left(\mathrm{P}_{0}+\rho g h\right) \mathrm{A}-\mathrm{P}_{0} \mathrm{~A}$
$=\rho g h \mathrm{~A}$
$=1.03 \times 10^{3} \times 10 \times 100 \times 900 \times 10^{-4}$
$=9.27 \times 10^{4}$ Newton
$=0.93 \times 10^{5}$ Newton
Q. 12 (B)

Apply Bernoulli between point-1 and point-2
$P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2}$
$\mathrm{P}_{1}=\mathrm{P}_{\mathrm{atm}}+\frac{\text { Force by hand }}{\text { Area }}$
V_{1} tends to zero becomes are of point- 2 is very small.
$\mathrm{P}_{2}=\mathrm{P}_{\mathrm{atm}}$
$\mathrm{P}_{\mathrm{atm}}+\mathrm{F} / \mathrm{A}=\mathrm{P}_{\mathrm{at}}+(1 / 2) \rho \mathrm{V}_{2}^{2}=\frac{2 \mathrm{~F}}{\mathrm{PA}} \ldots .(\mathrm{i})$
From Kinematics.

$$
2=\sqrt{\frac{2(\mathrm{~h})}{\mathrm{g}}} \times V_{2}
$$

$\therefore \mathrm{V}_{2}^{2}=20$
Using (i) \& (ii) we get
$20=\frac{2 \mathrm{~F}}{\rho \mathrm{~A}} \quad \therefore \mathrm{~F}=10 \mathrm{~N}$
Q. 13 (A)

Stress $=\frac{\text { Force }}{\text { Area }} \propto \frac{1}{\text { Area }}$

Stress $\propto \frac{1}{\mathrm{r}^{2}}\left(\right.$ Area $\left.=\pi \mathrm{r}^{2}\right)$

$$
\text { ratio of stress }=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

JEE-MAIN

PREVIOUS YEAR'S

Q. 1 (1)

$\frac{\Delta \mathrm{V}}{\mathrm{V}}=\gamma \Delta \mathrm{T}$
$=3 \alpha \Delta \mathrm{~T}$
Q. 2 (4)
$\frac{T_{1}}{A}=\frac{\mathrm{y}\left(\ell_{1}-\ell\right)}{\ell}$
$\frac{\mathrm{T}_{2}}{\mathrm{~A}}=\frac{\mathrm{y}\left(\ell_{2}-\ell\right)}{\ell}$
$\frac{T_{1}}{T_{2}}=\frac{\ell_{1}-\ell}{\ell_{2}-\ell}$
$\mathrm{T}_{1} \ell_{2}-\mathrm{T}_{1} \ell=\mathrm{T}_{2} \ell_{1}-\mathrm{T}_{2} \ell$

$$
\frac{\mathrm{T}_{1} \ell_{2}-\mathrm{T}_{2} \ell_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}=\ell
$$

Q. 3 (2)

$\frac{\mathrm{F}}{\mathrm{A}}=\mathrm{v} \frac{\Delta \mathrm{L}}{\mathrm{L}}$
$\frac{F}{A}=y \times \frac{0.04}{L}$
$\frac{\mathrm{F}}{4 \mathrm{~A}}=\mathrm{y} \times \frac{\Delta \mathrm{L}}{2 \mathrm{~L}}$
Q. 4 (1)
Q. 5 [32]

For $A \frac{E}{\pi r^{2}}=y \frac{2 m m}{a}$

For $B \frac{E}{\pi .16 r^{2}}=y \frac{4 m m}{b}$
$\therefore(1) /(2)$
$16=\frac{2 \mathrm{~b}}{4 \mathrm{a}}$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{1}{32}$
\therefore Answer $=32$
Q. 6 (1)

$$
P_{1}=\rho g d+P_{0}=3 \times 10^{5} \mathrm{~Pa}
$$

$\therefore \rho g d=2 \times 10^{5} \mathrm{~Pa}$
$\mathrm{P}_{2}=2 \rho \mathrm{gd}+\mathrm{P}_{0}$
$=4 \times 10^{5}+10^{5}=5 \times 10^{5} \mathrm{~Pa}$
$\%$ increase $=\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\mathrm{P}_{1}} \times 100$
$=\frac{5 \times 10^{5}-3 \times 10^{5}}{3 \times 10^{5}} \times 100=\frac{200}{3} \%$
Q. 7 (4)
(4) $\Delta \mathrm{P}=\mathrm{h} \rho \mathrm{g}$
$B=\frac{-\Delta P}{\left(\frac{\Delta V}{\mathrm{~V}}\right)}=\frac{-2 \times 10^{3} \times 10^{3} \times 9.8}{\left(-1.36 \times 10^{-2}\right)}$
$=1.44 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$
Q. 8 (3)

$\mathrm{m}=24 \mathrm{~kg}$
$\mathrm{A}=0.4 \mathrm{~m}^{2}$
$\mathrm{a}=1 \mathrm{~cm}^{2}$
$\mathrm{H}=40 \mathrm{~cm}$
Using Bernoulli's equation
$\Rightarrow\left(\mathrm{P}_{0}+\frac{\mathrm{mg}}{\mathrm{A}}\right)+\rho g \mathrm{H}+\frac{1}{2} \rho \mathrm{v}_{1}^{2}$
$=\mathrm{P}_{0}+0+\frac{1}{2} \rho \mathrm{v}^{2}$

$$
\begin{aligned}
& =\text { Neglecting } \mathrm{v}_{1} \\
& \Rightarrow \mathrm{v}=\sqrt{2 \mathrm{gH}+\frac{2 \mathrm{mg}}{\mathrm{~A} \rho}} \\
& \Rightarrow \mathrm{v}=\sqrt{8+1.2} \\
& \Rightarrow \mathrm{v}=3.033 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \mathrm{v} \simeq 3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 9 (1)
Q. 10 (2)
Q. 11 [5]
Q. 12 (2)
Q. 13 [20]
Q. 14 (2)
$\mathrm{Y}=\frac{\mathrm{MgL}^{3}}{4 \mathrm{bd}^{3} \delta}$
$\frac{\Delta \mathrm{y}}{\mathrm{y}}=\frac{\Delta \mathrm{M}}{\mathrm{M}}+\frac{3 \Delta \mathrm{~L}}{\mathrm{~L}}+\frac{\Delta \mathrm{b}}{\mathrm{b}}+\frac{3 \Delta \mathrm{~d}}{\mathrm{~d}}+\frac{\Delta \delta}{\delta}$
$\frac{\Delta \mathrm{y}}{\mathrm{y}}=\frac{10^{-3}}{2}+\frac{3 \times 10^{-3}}{1}+\frac{10^{-2}}{4}+\frac{3 \times 10^{-2}}{4}+\frac{10^{-2}}{5}$
$=10^{-3}[0.5+3+2.5+7.5+2]=0.0155$
Option (2)
Q. 15 [40]
Q. 16 (3)
Q. 17 (4)
Q. 18 (2)

Force on each column $=\frac{\mathrm{mg}}{4}$
Strain $=\frac{\mathrm{mg}}{4 \mathrm{AY}}$

$$
=\frac{50 \times 10^{3} \times 9.8}{4 \times \pi(1-0.25) \times 2 \times 10^{11}}=2.6 \times 10^{-7}
$$

Q. 19 [500]
Q. 20 [8]

Thermal force $\mathrm{F}=\mathrm{Ay} \propto \Delta \mathrm{T}$
$\mathrm{F}=\left(10 \times 10^{-4}\right)\left(2 \times 10^{11}\right)\left(10^{-5}\right)(400)$
$\mathrm{F}=8 \times 10^{5} \mathrm{~N}$
$\Rightarrow \mathrm{x}=8$

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 [3]

$\frac{F}{A}=y \frac{\Delta L}{L}$
$\frac{\mathrm{mg}}{\mathrm{A}}=\mathrm{y} \times(\alpha \Delta \theta)$
$\mathrm{m}=$
$\frac{\operatorname{Ay} \alpha(\Delta \theta)}{\mathrm{g}}=\frac{\pi \mathrm{r}^{2} \mathrm{y} \alpha(\Delta \theta)}{\mathrm{g}}=\frac{\pi\left(10^{-3}\right)^{2} \times 10^{11} \times 10^{-5} \times 10}{10}$
$=\pi \approx 3$
Q. 2 (C)
$Y=\frac{\left(\frac{\mathrm{F}}{\mathrm{A}}\right)}{\frac{\Delta \ell_{1}}{\mathrm{~L}}}$
$Y=\frac{\left(\frac{F}{4 \mathrm{~A}}\right)}{\frac{\Delta \ell_{2}}{2 \mathrm{~L}}}$
$\frac{\Delta \ell_{1}}{\Delta \ell_{2}}=2$
Q. $3 \quad$ [0.23 to 0.24$][2.38]$
$\frac{\mathrm{dV}}{\mathrm{V}}=\frac{3 \mathrm{da}}{\mathrm{a}}$
$B=-V \frac{d P}{d V}=\frac{-V(\rho g h)}{d V}=\frac{-\rho g h}{3 d a} a$
$70 \times 10^{9}=\frac{1 \times 5000 \times 10^{3} \times 10 \times 1}{3 \times \mathrm{da}}$
$\mathrm{da}=\Delta \mathrm{a}=\frac{5}{21} \times 10^{-2} \mathrm{~m}=2.38 \mathrm{~mm}$

Fluid Mechanics

ELEMENTARY

Q. 1 (2)

According to Boyle's law, pressure and volume are inversely proportional to each other i.e. $\mathrm{P} \propto \frac{1}{\mathrm{~V}}$

$$
\begin{aligned}
& \Rightarrow P_{1} V_{1}=P_{2} V_{2} \\
& \Rightarrow\left(P_{0}+h \rho_{w} g\right) V_{1}=P_{0} V_{2} \\
& \Rightarrow V_{2}=\left(1+\frac{h \rho_{w} g}{P_{0}}\right) V_{1} \\
& \Rightarrow V_{2}=\left(1+\frac{47.6 \times 10^{2} \times 1 \times 1000}{70 \times 13.6 \times 1000}\right) V_{1} \\
& \Rightarrow V_{2}=(1+5) 50 \mathrm{~cm}^{3}=300 \mathrm{~cm}^{3 .} \\
& {\left[\mathrm{As}_{2}=P_{0}=70 \mathrm{~cm} \text { of } \mathrm{Hg}=70 \times 13.6 \times 1000\right]}
\end{aligned}
$$

Q. 2 (3)

As the both points are at the surface of liquid and these points are in the open atmosphere. So both point possess similar pressure and equal to 1 atm . Hence the pressure difference will be zero.
Q. 3 (3)

$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} 1 . \Rightarrow\left(\mathrm{P}_{0}+\mathrm{h} \rho \mathrm{~g}\right) \mathrm{V}=\mathrm{P}_{0} \times 3 \mathrm{~V} \\
& \Rightarrow \mathrm{~h} \rho \mathrm{~g}=2 \mathrm{P}_{0} \Rightarrow \mathrm{~h}=\frac{2 \times 75 \times 13.6 \times \mathrm{g}}{\frac{13.6}{10} \times \mathrm{g}}=15 \mathrm{~m}
\end{aligned}
$$

Q. 4 (4)

Pressure $=$ h ρg i.e. pressure at the bottom is independent of the area of the bottom of the tank. It depends on the height of water upto which the tank is filled with water. As in both the tanks, the levels of water are the same, pressure at the bottom is also the same.
Q. 5 (4)

At the condition of equilibrium
Pressure at point $\mathrm{A}=$ Pressure at point B
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}} \Rightarrow 10 \times 1.3 \times \mathrm{g}=\mathrm{h} \times 0.8 \times \mathrm{g}+(10-\mathrm{h}) \times 13.6 \times \mathrm{g}$
By solving we get $\mathrm{h}=9.7 \mathrm{~cm}$
(4)

Let $\mathrm{M}_{0}=$ mass of body in vacuum.
Apparent weight of the body in air = Apparent weight of standard weights in air
\Rightarrow Actual weight - upthrust due to displaced air
= Actual weight - upthrust due to displaced air
$\Rightarrow 1$
\Rightarrow
$M_{0} g-\left(\frac{M_{0}}{d_{1}}\right) d g=M g-\left(\frac{M}{d_{2}}\right) d g \Rightarrow M_{0}=\frac{M\left[1-\frac{d}{d_{2}}\right]}{\left[1-\frac{d}{d_{1}}\right]}$
Q. 7 (4)

Apparent weight
$=\mathrm{V}(\rho-\sigma) \mathrm{g}=l \times \mathrm{b} \times \mathrm{h} \times(5-1) \times \mathrm{g}$
$=5 \times 5 \times 5 \times 4 \times \mathrm{g}$ Dyne $=4 \times 5 \times 5 \times 5 \mathrm{gf}$.
Q. 8 (1)

Fraction of volume immersed in the liquid $V_{\text {in }}=\left(\frac{\rho}{\sigma}\right) \mathrm{V}$ i.e. it depends upon the densities of the block and liquid. So there will be no change in it if system moves upward or downward with constant velocity or some acceleration.
Q. $9 \quad$ (2)
$\mathrm{V} \rho \mathrm{g}=\frac{\mathrm{V}}{2} \sigma \mathrm{~g}$
$\therefore \rho=\frac{\sigma}{2}(\sigma=$ density of water $)$
Q. 10 (2)

For streamline flow, Reynold's number $N_{R} \propto \frac{r \rho}{\eta}$ should be less. For less value of N_{R}, radius and density should be small and viscosity should be high.

Q. 11 (3)

If the liquid is incompressible then mass of liquid entering through left end, should be equal to mass of liquid coming out from the right end.
$\therefore \mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2} \Rightarrow \mathrm{~A} v_{1}=\mathrm{A} v_{2}+1.5 \mathrm{~A} . v$
$\Rightarrow \mathrm{A} \times 3=4 \times 1.5+1.5 \mathrm{~A} . v \Rightarrow v=1 \mathrm{~m} / \mathrm{s}$

Q. 12 (4)

As cross-section areas of both the tubes A and C are same and tube is horizontal. Hence according to equation of continuity $v_{A}=v_{C}$ and therefore according to Bernoulli's theorem $P_{A}=P_{C}$ i.e. height of liquid is same in both the tubes A and C .
Q. 13 (2)

Bernoulli's theorem for unit mass of liquid
$\frac{\mathrm{P}}{\rho}+\frac{1}{2} v^{2}=$ constant
As the liquid starts flowing, it pressure energy decreases
$\frac{1}{2} v^{2}=\frac{\mathrm{P}_{1}-\mathrm{P}_{2}}{\rho} \Rightarrow \frac{1}{2} v^{2}=\frac{3.5 \times 10^{5}-3 \times 10^{5}}{10^{3}} \Rightarrow v^{2}$
$=\frac{2 \times 0.5 \times 10^{5}}{10^{3}} \Rightarrow v^{2}=100 \Rightarrow v=10 \mathrm{~m} / \mathrm{s}$
Q. 14 (1)

Pressure at the bottom of tank $P=h \rho g=3 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$
Pressure due to liquid column
$\mathrm{P}_{l}=3 \times 10^{5}-1 \times 10^{5}=2 \times 10^{5}$
and velocity of water $v=\sqrt{2 g h}$
$\therefore v=\sqrt{\frac{2 \mathrm{P}_{l}}{\rho}}=\sqrt{\frac{2 \times 2 \times 10^{5}}{10^{3}}}=\sqrt{400} \mathrm{~m} / \mathrm{s}$
Q. 15 (4)

Upthrust - weight of body $=$ apparent weight $\mathrm{VDg}-\mathrm{Vdg}=\mathrm{Vd} \alpha$,

Where $a=$ retardation of body $\therefore \alpha=\left(\frac{D-d}{d}\right) g$

The velocity gained after fall from h height in air,
$v=\sqrt{2 \mathrm{gh}}$
Hence, time to come in rest,
$\mathrm{t}=\frac{v}{\alpha}=\frac{\sqrt{2 \mathrm{gh}} \times \mathrm{d}}{(\mathrm{D}-\mathrm{d}) \mathrm{g}}=\sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}} \times \frac{\mathrm{d}}{(\mathrm{D}-\mathrm{d})}$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (3)

$\operatorname{rg}(\mathrm{H}-\mathrm{h})$
because pressure varies with height.
Q. 2 (1)
$\mathrm{F}=[\mathrm{rgh}][\mathrm{A}]$
$=(1000)(10)(6)(10)(8)$.
Q. 3 (2)
$\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}$ as mass of water in A is more than in B $P_{A}=P_{B}$
Area of $A=$ Area of B
or P_{A} Area $_{A}=P_{B}$ Area $_{B}$
or $\quad F_{A}=F_{B}$.
Q. 4 (2)

Pressure $=\mathrm{h} \rho \mathrm{g}_{\text {eff. }}$
$a=g / 3$
$g_{\text {eff }}=\mathrm{g}-\mathrm{g} / 3=2 \mathrm{~g} / 3$
$\Rightarrow \mathrm{P}=\frac{0.15 \times 1000 \times 2 \times 10}{3}$
$\mathrm{P}=1 \mathrm{KPa}$
Q. 5 (2)

Given $\mathrm{A}=2 \times 10^{-3}, \mathrm{~h}=0.4 \mathrm{~m}, \mathrm{r}=900 \mathrm{Kg} / \mathrm{m}^{3}$
$\mathrm{F}=\mathrm{mg}=\mathrm{Vrg}=\left(\mathrm{pr}^{2} \mathrm{~h}\right) \mathrm{rg}$
$=2 \times 10^{-3} \times 0.4 \times 900 \times 10$
$=7.2 \mathrm{~N}$
Q. 6 (1)
$\mathrm{F}=\mathrm{mg}$
$\mathrm{F}=10 \mathrm{~N}$
Q. 7 (4)

O (zero) all the forces passes through O
\therefore no torque.

Q. 8 (A)

Q. 9 (4)
$\mathrm{Dv}=\mathrm{v}_{\mathrm{f}}-\mathrm{v}_{\mathrm{i}}=\frac{\mathrm{m}}{\mathrm{y}}-\frac{\mathrm{m}}{\mathrm{x}}$.
Q. 10 (2)
$h \rho g=2 P$

$$
\begin{aligned}
& \frac{4 \mathrm{~h}}{5} \rho \mathrm{~g}=\frac{8 \mathrm{P}}{5}\left\{\begin{array}{c}
\text { After lowering Pdue } \\
\text { toliquid. }
\end{array}\right\} \\
& \therefore \mathrm{P}_{\mathrm{T}}=\frac{8 \mathrm{P}}{5}+\mathrm{P}(\text { Atmospheric pressure }) \\
& =\frac{13 \mathrm{P}}{5}
\end{aligned}
$$

Q. 11 (1)

At same depth pressure is same So ratio $\mathrm{P}_{1}: \mathrm{P}_{2}=1: 1$.
Q. 12 (1)

$$
\frac{m_{1} g}{A_{1}}=\frac{m_{2} g}{A_{2}}
$$

Solving, $\mathrm{m}_{2}=3.75 \mathrm{~kg}$.
Q. 13 (D)

$$
\begin{aligned}
& 60 \mathrm{r}_{\mathrm{w}} \mathrm{~g}=\mathrm{h} \mathrm{r}_{1} \mathrm{~g} \\
& \Rightarrow 60 \times 1 \times \mathrm{g}=\mathrm{h} \times 4 \Rightarrow \mathrm{~h}=15 \mathrm{~cm}
\end{aligned}
$$

So, volume $=\mathrm{Ah}$
$=1 \times 35=35 \mathrm{~cm}^{3}$
Q. 14 (3)

$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$
$\Rightarrow 5 \times 4 \times \mathrm{g}+\mathrm{x} \times 1 \times \mathrm{g}$

$$
=(40-x) \times 1 \times g
$$

$\Rightarrow \mathrm{x}=10$
Now, $h_{1}=x+5=15 \mathrm{~cm}$
$\mathrm{h}_{2}=40-\mathrm{x}=30 \mathrm{~cm}$
$h_{2} / h_{1}=2$
Q. 15 (3)

Given $\mathrm{m}=12 \mathrm{~kg}, \mathrm{~A}=800 \mathrm{~cm}^{2}, \mathrm{r}=1000 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{P}=\mathrm{rgh}$
$\frac{\mathrm{mg}}{\mathrm{A}}=\mathrm{rgh}$
$\frac{12 \times 10}{800 \times 10^{-4}}=1000 \times 10 \times h$
$\frac{12}{80}=h$
$\mathrm{h}=\frac{1200}{80}=15 \mathrm{~cm}$
Q. 16 (2)
$\mathrm{F}_{\mathrm{b}}=\mathrm{rVg}-\mathrm{rvg}=0$
Q. 17 (1)
$\mathrm{mg}=60$
.................(i)
$\mathrm{mg}-\mathrm{r}_{\mathrm{i}} \mathrm{vg}=40$
.(ii)
$\frac{\mathrm{mg}-\rho_{\ell} \mathrm{vg}}{\mathrm{mg}}=\frac{2}{3}$ or $\frac{\rho_{0}}{\rho_{\ell}}=3$
where $r_{0}=$ density of the block and $r_{1}=$ density of the liquid.
Q. 18 (3)
$10^{3} \times \frac{4}{5}+13.5 \times 10^{3} \times \frac{1}{5}=\mathrm{r} \times 1$
or $\mathrm{r}=3.5 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Q. 19 (2)
Q. 20 (D)

At equilibrium position (abc) (dr)g = (bc) hrg After displacing slightly x , extra buoyancy force.

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{net}}=((\mathrm{bc}) \mathrm{x}) \mathrm{rg} \\
& \mathrm{a}=\frac{\mathrm{xbc} \mathrm{\rho g}}{\mathrm{abcd} \rho}=\frac{\mathrm{xg}}{\mathrm{ad}} \quad \mathrm{w}=\sqrt{\frac{\mathrm{g}}{\mathrm{ad}}}
\end{aligned}
$$

Q. 21 (C)
$\left[36-\mathrm{r}_{1} \mathrm{v}_{1}\right] \mathrm{g}=\left[48-\mathrm{r}_{1} \mathrm{v}_{2}\right] \mathrm{g}$

$$
\left[36-\rho_{i}\left(\frac{36}{9}\right)\right] g=\left[48-\rho_{i}\left(\frac{48}{\rho_{0}}\right)\right] g
$$

Solving, $\mathrm{r}_{0}=3$.
Q. 22 (1)

In stable equilibrium the object comes to its original state if disturbed.
Q. 23 (3)

As, weight $=$ Buoyant force
$\mathrm{mg}=[100 \times 6 \times 0.6 \mathrm{~g}]+(100 \times 1 \times 4) \mathrm{g}$
$\therefore \quad \mathrm{m}=760 \mathrm{gm}$.
Q. 24 (2)
$\mathrm{r}_{1} \mathrm{~V}=\mathrm{r}_{2} 2 \mathrm{~V}$
$m_{1}=m_{2}$
$\mathrm{m}_{1} \mathrm{~g}=0.92 \mathrm{Vg}=\mathrm{m}_{2} \mathrm{~g}-\mathrm{xVg}$ $\mathrm{x}=1.8 \mathrm{gm} / \mathrm{cm}^{3}$
Q. 25 (3)
Q. 26 (2)
$\mathrm{W}-\mathrm{v} \times 1 \times \mathrm{g}=\mathrm{W}_{1}$
$\mathrm{W}-\mathrm{v} \times \mathrm{x} \times \mathrm{g}=\mathrm{W}_{2}$
$\Rightarrow \mathrm{W}-\left(\mathrm{W}-\mathrm{W}_{1}\right) \times \mathrm{x}=\mathrm{W}_{2}$
$\mathrm{x}=\frac{\mathrm{W}-\mathrm{W}_{2}}{\mathrm{~W}-\mathrm{W}_{1}}$
Q. 27 (A)

$m g(x+2)=v \times 1 \times g \times x$
$\mathrm{v} 0.8 \mathrm{~g}(\mathrm{x}+2)=\mathrm{v} \times 1 \times \mathrm{g} \times \mathrm{x}$
$0.8 \mathrm{x}+1.6=\mathrm{x}$
$0.2 x=1.6$
$\mathrm{x}=8$
Q. 28 (4)

Equilibrium Position $W=F_{B}$
$\mathrm{W}=\mathrm{L}^{2} \mathrm{hr}_{\mathrm{M}} \mathrm{g}$
$h=\frac{W}{L^{2} \rho_{M} g}$
Q. 29 (3)
\therefore Volume where metal is present
$=\frac{9.8}{7800}=1.256 \times 10^{-3}$
Buoyancy $=\mathrm{vrg}=1.5 \mathrm{~g}$
$\Rightarrow \mathrm{v} \times 1000=1.5$
$\mathrm{v}=1.5 \times 10^{-3}$
fraction of volume $=$
$\frac{1.5 \times 10^{-3}-1.256 \times 10^{-3}}{1.5 \times 10^{-3}} \times 100$
$=16 \%$
Q. 30 (1)
$\sigma \times \frac{4}{3} \pi\left(\mathrm{R}^{3}-\mathrm{r}^{3}\right) \mathrm{g}=1 \times \frac{4}{3} \pi \mathrm{R}^{3} \mathrm{~g}$
$\frac{\mathrm{R}}{\mathrm{r}}=\left(\frac{\sigma}{\sigma-1}\right)^{1 / 3}$
Q. 31 (2)

Volume $=\frac{0.5}{500}=10^{-3} \mathrm{~m}^{3}$
Buoyancy $=\rho \mathrm{Vg}=1000 \times 10^{-3} \times 10$
$=10 \mathrm{~N}$
$\mathrm{m}=1 \mathrm{~kg}$
If float $=2.5 \mathrm{~kg}$, Reading $=1+1.5=2.5 \mathrm{~kg}$
Q. 32 (2)

$\mathrm{V}=\mathrm{A} . \ell$.
Now $\frac{\mathrm{A} \ell \rho \mathrm{g}}{3}+\frac{\mathrm{K} \ell}{3}=\mathrm{A} \ell \rho$
$\mathrm{K}=2 \rho \mathrm{Ag}$
Q. 33 (C)

$\mathrm{W}_{\mathrm{FB}}=\left\{\mathrm{K}_{\mathrm{B}}+\mathrm{U}_{\mathrm{B}}\right\}-\left\{\mathrm{K}_{\mathrm{A}}+\mathrm{U}_{\mathrm{A}}\right\}$
$-\mathrm{V} \rho \mathrm{xg}=0+0-0-\mathrm{V} \rho \mathrm{g} \mathrm{g}(\mathrm{x}+\mathrm{h})$
$\rho g x=\rho^{\prime} g x+\rho^{\prime} g h$
$x=\frac{\rho^{\prime} h}{\rho-\rho^{\prime}}$
Q. 34 (2)

Apparent weight $\left(\mathrm{W}_{\text {app. }}\right)=\mathrm{W}-\mathrm{V} \rho_{\ell} \mathrm{g}$
Since, $\mathrm{W}_{\text {app. (Ram }}>\mathrm{W}_{\text {app. (Shyam) }}$
$\Rightarrow \mathrm{W}_{\text {(Ram) }}{ }^{\text {app }}>\mathrm{W}_{\text {(Shyam) }}$
Therefore, from given passage shyam has more fat than Ram.
Q. 35 (2)
$\mathrm{V}_{1}>\mathrm{V}_{2} \Rightarrow \mathrm{~W}_{\text {app. (1) }}<\mathrm{W}_{\text {app. (2) }}$

Q. 36 (1)
$\rho_{\text {Salt waver }}>\rho_{\text {fresh waver }} \quad \Rightarrow \mathrm{W}_{\text {app. (s) }}<\mathrm{W}_{\text {app. (f) }}$
Hence (1)
Q. 37 (3)

Let ' V ' be the total volume of the person
Then ;

$$
\begin{aligned}
& \left(\frac{\mathrm{V}}{4}\right)\left(0.4 \times 10^{3}\right)+\left(\frac{3}{4} \mathrm{~V}\right)\left(\frac{4}{3} \times 10^{3}\right)=165 \\
\Rightarrow & \mathrm{~V}=\frac{165}{1100}
\end{aligned}
$$

Reading on spring balance under water is :

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{app}}=[165 \times 10]-\left[\frac{165}{1100}\right]\left[10^{3}\right][10] \\
= & 150 \mathrm{~N}
\end{aligned}
$$

Q. 38 (4)

Just after the string is cut :
$\mathrm{a}=\frac{150}{165}=0.91 \mathrm{~m} / \mathrm{s}^{2}$ Ans.
Q. 39 (3)
$\mathrm{R}=\mathrm{vt}$
$=\sqrt{2 \mathrm{gD}} \sqrt{\frac{2(\mathrm{H}-\mathrm{D})}{\mathrm{g}}}$
$=2 \sqrt{D(H-D)}$.
Q. 40 (3)
$\mathrm{x}=2 \sqrt{\mathrm{~h}(\mathrm{H}-\mathrm{h})}$
for $\mathrm{x}_{\text {max }}, \frac{\mathrm{dx}}{\mathrm{dh}}=0$ or $\mathrm{h}=\frac{\mathrm{H}}{2}$
Q. 41 (1)

From continuity equation, velocity at cross-section (1) is more than that at cross-section (2).

Hence ; $\mathrm{P}_{1}<\mathrm{P}_{2}$
Q. 42 (2)

$$
\begin{aligned}
& \mathrm{F}_{\text {trusus }}=\rho \mathrm{av}^{2} \\
& \mathrm{~F}_{\text {net }}=\mathrm{F}_{1}-\mathrm{F}_{2}=\mathrm{a} \mathrm{\rho}\left[2 \mathrm{~g}\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)\right] \\
& =\mathrm{a}(2 \mathrm{gh}) \\
& \text { or } \mathrm{F} \propto \mathrm{~h}
\end{aligned}
$$

Q. 43 (1)

$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
$\pi R^{2} d h / d t=\pi r^{2} v$
....(i)
$\mathrm{v}=\sqrt{2 \mathrm{gh}}$
....(ii)
from equation (ii) put the value of v in equation (i)

$$
\begin{aligned}
& \pi \mathrm{R}^{2} \mathrm{dh} / \mathrm{dt}=\pi \mathrm{r}^{2} \sqrt{2 \mathrm{gh}} \\
\Rightarrow & \int \frac{\mathrm{R}^{2} \mathrm{dh}}{\mathrm{r}^{2} \sqrt{2 \mathrm{gh}}}=\int \mathrm{dt} \\
& \frac{\mathrm{R}^{2}}{\mathrm{r}^{2} \sqrt{2 \mathrm{~g}}} \int_{\mathrm{h}}^{0} \frac{\mathrm{dh}}{\sqrt{\mathrm{~h}}}=\int_{0}^{\mathrm{t}} \mathrm{dt}
\end{aligned}
$$

on solving
$t=46.26$ second.
Q. 44 (1)
$\mathrm{AV}=$ constant
$\mathrm{A} \downarrow \mathrm{V} \uparrow$
$\mathrm{P}+\rho \mathrm{gh}+\frac{1}{2} \rho v^{2}=$ constant
$\mathrm{V} \uparrow \mathrm{P} \downarrow$
Q. 45 (A)

$\Delta \rho \mathrm{g}=\frac{1}{2} \rho \mathrm{v}^{2}$
$v=\sqrt{2 D g}$
$x=V \sqrt{\frac{2(H-D)}{g}}=2 \sqrt{D(H-D)}$
Q. 46 (B)
$\frac{d m}{d t}=\rho A v$
$\Delta \mathrm{P}=\mathrm{F}_{\text {avg }}$. . sec .

$\Rightarrow 2 \rho \mathrm{Av}^{2} \cos 60^{\circ}$
$\Rightarrow 1000 \times 6 \times 10^{-4} \times(12) \times \frac{1}{2} \times 2$
$=86.4 \mathrm{Nt}$.
Q. 47 (1)

Continuty equation $\mathrm{bV}=(\mathrm{ax}+\mathrm{b}) \mathrm{V}_{2}$
By bernaulies equation $=P_{2}+\frac{1}{2} \rho v_{2}{ }^{2}=$ cosntant
$\mathrm{P}_{2}=$ Costant $-\frac{1}{2}{\rho v_{2}}^{2}$
$P_{2}=$ Costant $-\frac{1}{2} \rho \frac{b^{2} V^{2}}{(a x+b)^{2}}$
$\mathrm{P}_{2}=$ Cosntant $-\frac{\mathrm{C}_{1}}{(\mathrm{ax}+\mathrm{b})^{2}}$
Where $\mathrm{C}_{1}=$ Constant
Q. 48 (2)

$$
\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}
$$

$$
0.02 \times 2=0.01 \times \mathrm{V}_{2}
$$

$$
\mathrm{V}_{2}=4 \mathrm{~m} / \mathrm{sec} .
$$

$$
P_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\frac{1}{2} \rho V_{2}^{2}
$$

$$
4 \times 10^{4}+\frac{1}{2} \times 1000 \times 2^{2}
$$

$$
=P_{2}+\frac{1}{2} \times 1000 \times 4^{2} \Rightarrow P_{2}=3.4 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

Q. 49 (2)

$$
\sqrt{2 \times 20 \times 10^{-2} \times 10}=2 \mathrm{~m} / \mathrm{sec} .
$$

Q. 50 (2)
Q. 51 (4)

Inlet $=$ outlet
$\alpha \mathrm{dt}=\mathrm{a} \sqrt{2 \mathrm{gh}} \mathrm{dt}$
$\mathrm{h}=\frac{\alpha^{2}}{2 \mathrm{ga}^{2}}=\frac{(100)^{2}}{2 \times(1000)(1)}=5 \mathrm{~cm}$

Q. 52 (4)

Force exerted by the water on the corner $=$ change in momentum in 1 sec
$=\sqrt{2} \mathrm{mv}$

$$
=\sqrt{2} \rho v L
$$

Q. 53 (3)

Force $=\rho \mathrm{a}(\sqrt{2 \mathrm{gh} / 2})^{2}$
acceleration $=\frac{\rho a g h}{\rho \mathrm{Na} \cdot \mathrm{H}}=\mathrm{g} / \mathrm{N}$
Q. 54 (2)
$\alpha \mathrm{dt}=\mathrm{Av}$ dt
$\Rightarrow 10^{-4}=10^{-4} \sqrt{2 \mathrm{gh}} \Rightarrow \mathrm{h}=\frac{1}{2 \mathrm{~g}}$
$\mathrm{h}=0.051 \mathrm{~m}$
Q. 55 (D)
$\mathrm{R}=\sqrt{2 \mathrm{~g}\left(\mathrm{H}-\mathrm{h}_{1}\right)} \sqrt{\frac{2 \mathrm{~h}_{1}}{\mathrm{~g}}}$
$=\sqrt{2 g\left(H-h_{2}\right)} \sqrt{\frac{2 h_{2}}{g}}$
$\left(H-h_{1}\right) h_{1}=\left(H-h_{2}\right) h_{2}$
$\mathrm{H}=\mathrm{h}_{1}+\mathrm{h}_{2}$
For max. range $=\frac{H}{2}$
Q. 56 (2)

By Bernaulie's Theorem
$\mathrm{P}_{0}+\frac{10 \times 10}{1000 \times 10^{-4}}+1000 \times 10 \times \frac{50}{100}=\mathrm{P}_{0}+\frac{1}{2} \times 1000 \times \mathrm{v}^{2}$

Q. 57 (1)

Change in momentum is/sec.

$$
\sqrt{2} \rho \mathrm{Av}^{2}=565.7 \mathrm{~N}
$$

Q. 58 (2)

$$
\begin{aligned}
& \rho \mathrm{AV}^{2}=1000 \times 2 \times 10^{-4} \times(10)^{2} \\
& =20 \mathrm{~N}
\end{aligned}
$$

Q. 59 (3)

Energy required in one second is the power
$10^{-1}=$ A. V.
$\Rightarrow 10^{-1}=10^{-2} \times \mathrm{V}$
$\Rightarrow \mathrm{V}=10 \mathrm{~m} / \mathrm{sec}$.
$\mathrm{mgh}+\frac{1}{2} \mathrm{mV}^{2}=\mathrm{P}$
Here $\mathrm{m}=$ mass in one second

$$
\begin{aligned}
& \mathrm{P}=\rho \mathrm{AVgh}+\frac{1}{2} \rho \mathrm{AV}^{3} \\
& \mathrm{P}=\rho \mathrm{AV}[10 \times 10+50] \\
& =15 \mathrm{Kwatt}
\end{aligned}
$$

Q. $60 \quad$ (3)

Q. 61 (3)

If the liquid is incompressible then mass of liquid entering through left end, should be equal to mass of liquid coming out from the right end.

$$
\begin{aligned}
& \therefore \mathrm{M}=\mathrm{m}_{1}+\mathrm{m}_{2} \Rightarrow \mathrm{~A} v_{1}=\mathrm{A} v_{2}+1.5 \mathrm{~A} . v \\
& \Rightarrow \mathrm{~A} \times 3=4 \times 1.5+1.5 \mathrm{~A} . v \Rightarrow \mathrm{v}=1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Q. 62 (2)
$A_{1} V_{1}=A_{2} V_{2}\left(\right.$ Given $\left.\frac{r_{1}}{r_{2}}=\frac{3}{2}\right)$

$$
\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{\mathrm{A}_{2}}{\mathrm{~A}_{1}}=\frac{\pi \mathrm{r}_{2}^{2}}{\pi \mathrm{r}_{1}^{2}}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9}
$$

Q. 63 (4)

$$
\begin{aligned}
& \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\
& \pi\left(1 \times 10^{-2}\right)^{2} \times 3 \\
& =100 \times \pi \frac{\left(0.05 \times 10^{-2}\right)^{2}}{4} \times \mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=48 \mathrm{~m} / \mathrm{sec} .
\end{aligned}
$$

Q. 64 (1)

$$
\text { From } A_{P} \mathrm{~V}_{\mathrm{P}}=\mathrm{A}_{\mathrm{Q}} \mathrm{~V}_{\mathrm{Q}}
$$

$$
\frac{\mathrm{V}_{\mathrm{P}}}{\mathrm{~V}_{\mathrm{Q}}}=\frac{\mathrm{A}_{\mathrm{Q}}}{\mathrm{~A}_{\mathrm{P}}}=\frac{\pi\left(2 \times 10^{-2}\right)^{2}}{\pi\left(1 \times 10^{-2}\right)^{2}}
$$

$$
\mathrm{V}_{\mathrm{P}}=4 \mathrm{~V}_{\mathrm{Q}}
$$

Q. 65 (3)

$$
\frac{\mathrm{dV}}{\mathrm{dt}}=\mathrm{A} \sqrt{2 \mathrm{gh}}
$$

Q. 66 (1)

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1 (C)

Since not touching,
So $R=F_{b}=\rho_{1}(\mathrm{vg})=40 \mathrm{~g}$.
$R^{\prime}-R=80 \mathrm{~g}-40 \mathrm{~g}=40 \mathrm{~g}$
Hence R^{\prime} will be 40 g more than R
Q. 2 (A)

By action - reaction, F_{b} is internal So, balance weight $=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{g}$. and extra mass $=10 \mathrm{~g}$
Q. 3 (D)

Force is same pressure is different
Q. 4 (B)

Take area of projection from left

$$
\begin{aligned}
& \frac{2 \rho g \ell \mathrm{~h}^{2}}{2}=\frac{3 \rho \mathrm{~g} \ell \mathrm{R}^{2}}{2} \\
& \mathrm{~h}=\sqrt{\frac{3}{2}} \cdot \mathrm{R}
\end{aligned}
$$

Q. 7
Q. 8
(B)

$(a-x) a^{2}+\frac{1}{2} x^{2}=\frac{2}{3} a^{3}$
$(a-x)+\frac{x}{2}=\frac{2}{3} a$
$a-\frac{x}{2}=\frac{2}{3} a$
$x=\frac{2 a}{3}$
$\therefore \tan \theta=\frac{\mathrm{x}}{\mathrm{a}}=\frac{\mathrm{acc} .}{\mathrm{g}} \mathrm{a}=\frac{2}{3} \mathrm{~g}$

Q. 9 (B)

For the given situation, liquid of density 2ρ should be behind that of ρ.

From right limb :
$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}$
$\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{A}}+\rho \mathrm{a} \frac{\ell}{2}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\rho \mathrm{a} \frac{\ell}{2}$
$\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\mathrm{B}}+(2 \rho) \mathrm{a} \frac{\ell}{2}=\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\frac{3}{2} \rho \mathrm{a} \ell$
....(1)
But from left limb:

$$
\begin{equation*}
\mathrm{P}_{\mathrm{C}}=\mathrm{P}_{\text {atm }}+(2 \rho) \mathrm{gh} \tag{2}
\end{equation*}
$$

From (1) and (2) :
$\mathrm{P}_{\mathrm{atm}}+\rho \mathrm{gh}+\frac{3}{2} \rho \mathrm{a} \ell=\mathrm{P}_{\mathrm{atm}}+2 \rho \mathrm{gh} \Rightarrow \mathrm{h}=\frac{3 \mathrm{a}}{2 \mathrm{~g}} \ell$ Ans.
Q. 10 (A)

No sliding \Rightarrow pure rolling
Therefore, acceleration of the tube $=2 \mathrm{a}$ (since COM of cylinders are moving at 'a')

$\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{atm}}+\rho(2 \mathrm{a}) \mathrm{L}$ (From horizontal limb)
Also; $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\text {atm }}+\rho \mathrm{gH}$ (From vertical limb)
$\Rightarrow \mathrm{a}=\frac{\mathrm{gH}}{2 \mathrm{~L}}$ Ans.
Q. 11 (B)

As long as $\rho \leq \rho_{\mathrm{w}}$, pressure at the bottom of the pan would be same everywhere, according to the Pascal's law.

Q. 12 (B)

$y=\frac{\omega^{2} r^{2}}{2 y}$
Put values and get $\mathrm{y}=2 \mathrm{~cm}$.

Q. 13 (A)

The four piston are initially in equilibrium. As additional force F is applied to each piston, the pressure in fluid at each point must be increased by $\frac{F}{A}$ so that each piston retains state of equilibrium.

Thus the increment in pressure at each point is $\Delta \mathrm{P}=$ $\frac{\mathrm{F}}{\mathrm{A}}$ (by Pascal's law)
Q. 14 (B)

$$
\operatorname{tanq}=\frac{a+g \sin \alpha}{g \cos \alpha}
$$

Q. 15 (C)

$d P . A=r A d x . w^{2} x$
$\int d p=\int \rho \omega^{2} x d x$
$\mathrm{DP}=\frac{\rho \omega^{2} \ell^{2}}{2}=\frac{3 \ell \rho \mathrm{~g}}{2}$
$w=\sqrt{\frac{3 g}{\ell}}$
Q. 16 (D)

Q. 17 (A)
Q. 18 (A)

$\mathrm{mg}=\mathrm{A} .2 \mathrm{~L} \times 0.75 \times \mathrm{g}$
$\mathrm{T}+\mathrm{Axg}=\mathrm{A} .2 \mathrm{~L} \times 0.75 \mathrm{~g}$
$\mathrm{T}=\mathrm{Ag}[1.5 \mathrm{~L}-\mathrm{x}]$
A $x g \cos \theta\left(\ell-\frac{x}{2}\right)=T \cos \theta \ell$
$\mathrm{x}\left(\ell-\frac{\mathrm{x}}{2}\right)=\ell[1.5 \mathrm{~L}-\mathrm{x}] \mathrm{x}=\ell$
Q. 19 (B)

$(3 \mathrm{M}+\mathrm{m}) \mathrm{g}=\rho \mathrm{g} \mathrm{g}$
Torque balance about B
$\operatorname{mg}(\mathrm{d}-\ell)+\rho \mathrm{vg} \frac{\ell}{2}$
$=2 m g \ell+\frac{\rho v g}{2}(d-\ell) \quad \ell=\frac{d(v \rho-2 M)}{2(\rho v-3 M)}$
Q. 20 (C)

ค. $\frac{4}{5} a^{3}=M$

Q. 21 (B)
F.B.D. of rod:
$\mathrm{W}=(0.012)(1)\left(2 \times 10^{3}\right)(10)=240 \mathrm{~N}$
$\mathrm{F}_{\mathrm{b}}=(0.012)(1)\left(10^{3}\right)(10)=120 \mathrm{~N}$

Torque about O
(For equilibrium)
$(240-120)\left(\frac{\sin \alpha}{2}\right) \quad=45(\cos \alpha) \Rightarrow \tan \alpha=\frac{90}{120}$
$=\frac{3}{4} \Rightarrow \alpha=37^{\circ}$

Q. 22 (B)

Torque about CM :
$\mathrm{F}_{\mathrm{b}} \cdot \frac{\ell}{4}=\mathrm{I} \alpha$

$\Rightarrow \quad \alpha=\frac{1}{\mathrm{I}}\left(\pi \mathrm{r}^{2}\right)(\ell)(\rho)(\mathrm{g}) \cdot \frac{\ell}{4} \alpha=\frac{\pi \mathrm{r}^{2} \ell^{2} \mathrm{~g} \rho}{4 \mathrm{I}}$
' α ' will be same for all points
Hence (B).
Q. 23 (A)

$\mathrm{d}_{1} \mathrm{AL}+\mathrm{d}_{2} \mathrm{AL}=\frac{3}{2} \mathrm{LAd}$
$\mathrm{d}_{1}+\mathrm{d}_{2}=\frac{3 \mathrm{~d}}{2}$
$\therefore d_{1}>\frac{3 d}{4}$

Q. 24 (B)

(W.D. $)_{\mathrm{mg}}+(\text { W.D. })_{\mathrm{FB}}=\Delta \mathrm{K}$
$-m g(H+h)+\left(F_{B}\right) h=1 / 2 \mathrm{mv}_{\mathrm{f}}^{2}$
$\Rightarrow-\frac{4}{3} \pi r^{3} \rho(H+h) g+\left(\frac{4}{3} \pi r^{3}\right) \sigma g h=0$
$-\rho g \mathrm{H}-\rho \mathrm{gH}+\sigma \mathrm{gh}=0$
gh $(\sigma-\rho)=\rho g H$
$H=\left(\frac{\sigma}{\rho}-1\right) h$
Q. 25 (A)

Q. 26 (B)
$\mathrm{g}_{\text {eff }}=\mathrm{g}+\mathrm{a}$
$\Rightarrow T+\mathrm{mg}_{\text {eff }}=\mathrm{F}_{\mathrm{B}}$
$T=V d(g+a)-v \rho(g+a)$
$=v[(g+a)(d-\rho)]$
Q. 27 (A)

Increasing the temperature of water from $2^{\circ} \mathrm{C}$ to $3^{\circ} \mathrm{C}$ increases its density while decreases the density of iron.

Hence the bouyant force increases.
Q. 28 (D)

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h \rho_{c} g=\frac{1}{3} \pi(\mathrm{r} / 3)^{2} \frac{\mathrm{~h}}{3}(0.8) \mathrm{g} \\
& \rho_{\mathrm{c}}=\frac{0.8}{27}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3} \pi r^{2} h \rho_{\mathrm{c}} g=\frac{1}{3} \pi\left(\frac{\mathrm{r}}{6}\right)^{2} \frac{\mathrm{~h}}{6} \times 0.8 \times \mathrm{g}+ \\
& \frac{1}{3} \pi\left[\left(\frac{\mathrm{r}}{2}\right)^{2} \frac{\mathrm{~h}}{2}-\left(\frac{\mathrm{r}}{6}\right)^{2} \frac{\mathrm{~h}}{6}\right] \rho g \\
& \Rightarrow \frac{0.8}{27}=\frac{0.8}{36 \times 6}+\left[\frac{1}{8}-\frac{1}{36 \times 6}\right] \rho \quad \rho=1.9
\end{aligned}
$$

Q. 29 (B)

Initially
$W_{\text {metal }}=W_{\text {ice }}=$ Buoyancy
$\mathrm{V}_{\text {metal }} \rho m g+\mathrm{V}_{\text {ice }} \rho_{\text {ice }} \mathrm{g}=\mathrm{V}_{\mathrm{d}} \rho_{\ell} \mathrm{g}$
$\therefore \mathrm{V}_{\mathrm{d}}=\frac{\mathrm{v}_{\text {metal }} \rho_{\mathrm{m}}}{\rho_{\ell}}+\frac{\mathrm{V}_{\text {ice }} \rho_{\text {ice }}}{\rho_{\ell}}$
finally volume displaced $\mathrm{V}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{w}}$ (From ice)
$=V_{m}+\frac{m}{\rho_{w}}=V_{m}+\frac{V_{i} \ell_{\mathrm{i}}}{\rho_{w}}$ <previous
Q. 30 (B)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{A}}=(1.2 \times 0.7 \times \mathrm{g}+0.8 \times 1.2 \mathrm{~g}) \\
& 0.8 \times \mathrm{A}_{0}(\mathrm{x}+1.2+0.8) \mathrm{g}=\mathrm{P}_{\mathrm{A}} \cdot \mathrm{P}_{0} \\
& \mathrm{x}+1.2+0.8=0.84+0.96 \\
& \mathrm{x}=0.25 \mathrm{~cm}
\end{aligned}
$$

Q. 31 (B)

Total buoyancy
$=$ Total Gravitation
$\Rightarrow 1^{3} \times 1 \times \mathrm{g}+1^{2} \mathrm{x} \times 1 \mathrm{r}$
$=1^{3} \times 0.6 \times \mathrm{g}+1^{3} 1.15 \times \mathrm{g}$
$1+\mathrm{x}=0.6+1.15$
$\mathrm{x}=0.75 \mathrm{~m}$
$\therefore 1-x=25 \mathrm{~cm}$
Q. 32 (A)

Velocity of efflux of water $(v)=\sqrt{2 g\left(\frac{h}{2}\right)}=\sqrt{g h}$
force on ejected water $=$ Rate of change of momentum of ejected water.

$$
\begin{aligned}
& =\rho(a v)(v) \\
& =\rho a v^{2}
\end{aligned}
$$

Torque of these forces about central line

$$
\begin{aligned}
& =\left(\rho a v^{2}\right) 2 R \cdot 2 \\
& =4 \rho a v^{2} R=4 \rho \text { agh } R
\end{aligned}
$$

Q. 33 (B)

$$
\begin{aligned}
& A_{1} V_{1}=A_{2} V_{2} \text { or } A \times V_{1}=2 A \sqrt{\frac{g \ell}{2}} \text { or } V_{1}=\sqrt{2 g \ell} \\
& \frac{1}{2} \rho\left[\mathrm{~V}_{1}^{2}-V_{2}^{2}\right]=\rho g \ell \sin \theta \Rightarrow \frac{1}{2}\left[2 g \ell-\frac{g \ell}{2}\right]=g \ell \sin \theta
\end{aligned}
$$

on solving $\sin \theta \frac{3}{4}$.
Q. 34 (D)

The velocity of fluid at the hole is: $V_{2}=\sqrt{\frac{2 g h}{1+\left(\mathrm{a}^{2} / \mathrm{A}^{2}\right)}}$
Using continuity equation at the two cross-sections (1) and (2) :

$$
\mathrm{V}_{1} \mathrm{~A}=\mathrm{V}_{2} \mathrm{a} \quad \Rightarrow \mathrm{~V}_{1}=\frac{\mathrm{a}}{\mathrm{~A}} \mathrm{~V}_{2}
$$

\Rightarrow acceleration (of top surface $)=-\mathrm{V}_{1} \frac{\mathrm{dV}_{1}}{\mathrm{dh}}$
$=-\frac{a}{A} V_{2} \frac{d}{d h}\left(\frac{a}{A} V_{2}\right)$
$a_{1}=-\frac{a^{2}}{A^{2}} V_{2} \frac{d V_{2}}{d h}=-\frac{a^{2}}{A^{2}} \sqrt{2 g h} \sqrt{2 g} \cdot \frac{1}{2 \sqrt{h}} \Rightarrow a_{1}=$ $\frac{-g a^{2}}{A^{2}}$
Q. 35 (B)

Pressure at (1) :
$P_{1}=P_{\text {atm }}+\rho g(2 h)$
Applying Bernoulli's theorum between points (1) and (2)

$$
\left[P_{\mathrm{atm}}+2 \rho g h\right]+\rho g(2 h)+\frac{1}{2}(2 \rho)(0)^{2}
$$

$=P_{a t m}+(2 \rho) g(0)+\frac{1}{2}(2 \rho) v^{2}$
$\Rightarrow \mathrm{v}=2 \sqrt{\mathrm{gh}}$ Ans.

Velocity of efflux at a depth h is given by $\mathrm{V}=$ Volume of water following out per second from both the holes are equal
$\therefore \quad \mathrm{a}_{1} \mathrm{~V}_{1}=\mathrm{a}_{2} \mathrm{~V}_{2}$
or $\left(L^{2}\right) \sqrt{2 g(y)}=\pi R^{2} \sqrt{2 g(4 y)}$

or $\quad \mathrm{R}=\frac{\mathrm{L}}{\sqrt{2 \pi}}$
Q. 37 (C)

$$
\begin{aligned}
& \frac{\mathrm{dm}}{\mathrm{dt}}=\rho \mathrm{A} \frac{\mathrm{dh}}{\mathrm{dt}}=\rho \mathrm{a}_{0} \mathrm{v}-\rho \mathrm{a}_{1} \sqrt{2 \mathrm{gh}} \\
& \Rightarrow 4000 \frac{\mathrm{dh}}{\mathrm{dt}}=1 \times 2-0.5 \sqrt{2 \mathrm{gh}} \\
& \text { for } \mathrm{t}=\infty \frac{\mathrm{dh}}{\mathrm{dt}}=0 \\
& \Rightarrow 2=0.5 \sqrt{2 \mathrm{gh}} \\
& \Rightarrow \mathrm{~h}=0.8
\end{aligned}
$$

Q. 38 (D)

Initial
apg $=\frac{1}{2} \rho \mathrm{~V}^{2}$
$\mathrm{V}_{0}=\sqrt{2 \mathrm{ga}}$
Now $V=\sqrt{2 \frac{a}{\sqrt{2}}}=\frac{V_{0}}{\sqrt[4]{2}}$
Q. 39 (C)

Volume decrease $=$ Volume outlet
Adh $=\mathrm{a} \sqrt{2 \mathrm{gh}} \mathrm{dt}$
$\frac{-d h}{d t}=\frac{a \sqrt{2 g h}}{A} \Rightarrow \int_{H}^{H / \eta} \frac{d h}{\sqrt{2 g h}}=-\int_{0}^{t} \frac{a}{A} d t$
$t_{1}=\left[-\sqrt{\frac{H}{\eta}}+\sqrt{H}\right]$
Similarly $t_{2}=\sqrt{\frac{H}{\eta}}$
$\Rightarrow \mathrm{t}_{1}=\mathrm{t}_{2} \Rightarrow 2 \sqrt{\frac{\mathrm{H}}{\eta}}=\sqrt{\mathrm{H}}$
$\eta=4$
Q. 40 (A)
Q. 41 (D)

We know that
$\mathrm{t}_{0}=\sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$

When height become 4H then time
$\mathrm{t}^{\prime}=\sqrt{2 \frac{(4 \mathrm{H})}{\mathrm{g}}}$
$\mathrm{t}^{\prime}=2 \mathrm{t}_{0}$
Q. 42

$$
\begin{aligned}
& (\mathrm{C}) \\
& \mathrm{R}=\mathrm{vt} \\
& \mathrm{v}=\sqrt{2(2 \mathrm{H}-\mathrm{x}) \mathrm{g}} \\
& \mathrm{t}=\sqrt{\frac{2(\mathrm{H}+\mathrm{x})}{\mathrm{g}}} \\
& \mathrm{R}_{\max }=\frac{\mathrm{dR}}{\mathrm{dx}}=0
\end{aligned}
$$

\& we get
$x=\frac{H}{2}$
Total height from ground $=\mathrm{H}+\frac{\mathrm{H}}{2}=1.5 \mathrm{H}$
Q. 43 (D)
$R=\sqrt{2 \mathrm{~g} \times 10} \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}$.
\qquad (1)

Now $\rho g h+P_{o}+P_{E}=P_{o}+\frac{1}{2} \rho V^{2}$
$\Rightarrow \mathrm{V}^{2}=2 \mathrm{gh}+\frac{2 \mathrm{P}_{\mathrm{E}}}{\rho}$
$\Rightarrow R^{\prime}=\sqrt{(2 g 10)+\left(\frac{2 P_{E}}{\rho}\right)} \sqrt{\frac{2 H}{g}}$
.....(2)
From (1) \& (2) $\mathrm{P}_{\mathrm{E}}=3 \mathrm{~atm}$.
Q. 44 (D)
$\mathrm{v}_{1}=\sqrt{2 \mathrm{gh} / 2}=\sqrt{\mathrm{gh}}$
for v_{2}
$\rho g h+2 \rho g \frac{h}{2}=\frac{1}{2} 2 \rho \cdot v_{2}^{2}$
$2 \mathrm{gh}=\mathrm{v}_{2}{ }^{2}$
$\mathrm{v}_{2}=\sqrt{2 \mathrm{gh}}$
Q. 45 (C)
$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
$10^{-2} \times 2=0.5 \times 10^{-2} \times \mathrm{V}^{2}$
$\mathrm{V}_{2}=4 \mathrm{~m} / \mathrm{sec}$.
$P_{A}+\frac{1}{2} \rho V_{A}^{2}=P_{B}+\frac{1}{2} \rho V_{B}^{2}$
$8000+\frac{1}{2} 1000 \times 2^{2}$
$=P_{B}+\frac{1}{2} 1000 \times 4^{2}$
$\mathrm{P}_{\mathrm{B}}=2000 \mathrm{~Pa}$

Q. 46 (A)

$\mu \mathrm{mg}=\frac{2}{2} \rho \pi\left(\frac{\mathrm{~d}}{2}\right)^{2} .2 \mathrm{gH}$.
$d=\sqrt{\frac{2 \mu M}{\pi \rho H}}$
Q. 47 (C)

FromA V_{1}
Where $\mathrm{V}_{1} \perp$ to area

$V \cos 60^{\circ}$

ratio $=\frac{\mathrm{V}}{\mathrm{V} \cos 60^{\circ}}=2$
Q. 48 (B)

FromA $\mathrm{A}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
(1) $\left(\mathrm{V}_{1}\right)\left(\frac{1}{2}\right) \mathrm{V}_{2} \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{2}$
$\mathrm{V}_{2}=2 \mathrm{~V}_{1}$
Now,
$\mathrm{V}_{2}{ }^{2}=\mathrm{V}_{1}{ }^{2}+2 \mathrm{gh}$
$4 \mathrm{~V}_{1}^{2}=\mathrm{V}_{1}^{2}+2(10)\left(\frac{10}{100}\right)$
$\mathrm{V}_{1}=\sqrt{\frac{2}{3}}$
Now volumetric rate of flow
$=\mathrm{A}_{1} \mathrm{~V}_{1}$
$=\frac{1 \times 10^{-4}}{10^{-3}} \times \frac{60 \sqrt{2}}{\sqrt{3}}=4.9 \mathrm{lit} / \mathrm{min}$.

JEE-ADVANCED

MCQ/COMPREHENSION/COLUMN MATCHING
 Q. 1 (A, C)

In a static fluid, pressure remains same at the same level, ie, pressure do not vary with x-coordinate. Hence (C).
Q. 2 (A, C, D)
$\mathrm{P}=\mathrm{r}(2 \mathrm{~h}) \mathrm{g}$
$\frac{F}{A_{2}}=r(2 h) g$
$\mathrm{F}_{\text {base }}=2 \mathrm{hrgA}$
$F_{\text {wall }}=\mathrm{hrg}\left[\mathrm{A}_{2}-\mathrm{A}_{1}\right]$, at the level x
Q. 3 (C,D)

Let completely submerged in water, then $\mathrm{F}_{\mathrm{b}}=1000>\mathrm{mg}(920) \quad$ So, not possible
Let complete in oil
$\mathrm{F}_{\mathrm{b}}=(0.6)(4)(1000+(1)(6)(100)=840$
$\mathrm{F}_{\mathrm{b}}<\mathrm{mg} \quad$ So, not possible
So, let ' x ' part in oil and remaining in water
$920=[(1)(10-\mathrm{x})+(0.6)(\mathrm{x})] 100$
$9.2=10-x+0.6 x$
$0.4 \mathrm{x}=0.8$
$\mathrm{x}=2 \mathrm{~cm}$.
Q. 4 (B,C)
$\mathrm{PV}=$ constant
(Assumed isothermal process)

Q. $5 \quad$ (A)

(A) As, $\mathrm{dm}=\mathrm{A} \rho_{\mathrm{w}} \mathrm{vdt}$

$$
\begin{aligned}
& \Rightarrow \frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{A} \rho_{\mathrm{w}} \mathrm{v} \\
& \Rightarrow \frac{\mathrm{dm}}{\mathrm{dt}}=\mathrm{V} \rho_{\mathrm{w}} \pi \frac{\mathrm{D}^{2}}{4}
\end{aligned}
$$

where ' D ' is the diameter of stream.
Q. 6 (D)
$\mathrm{V}_{1} \mathrm{~A}_{1}=\mathrm{V}_{2} \mathrm{~A}_{2}$

$$
\frac{\pi v_{0} D_{0}{ }^{2}}{4}=\frac{\pi v D^{2}}{4} \Rightarrow D=D_{0} \sqrt{\frac{v_{0}}{v}}
$$

Q. 7 (B)

$$
v=\sqrt{2 g h}=\sqrt{2 g(b+x)} .
$$

Q. 8 (A)

Applying continuity equation at points with diameter $\mathrm{D}_{0} \& \mathrm{D}$:

$$
\begin{aligned}
& =\sqrt{2 g b} \cdot\left[\frac{\pi \cdot D_{0}^{2}}{4}\right]=\sqrt{2 g(b+x)}\left[\frac{\pi D^{2}}{4}\right] \\
& \Rightarrow D=D_{0}\left[\frac{b}{b+x}\right]^{1 / 4}
\end{aligned}
$$

Q. 9 (B)

Solving the preceding formula for the tank height h gives:

$$
\mathrm{h}=\mathrm{x}\left(\mathrm{D} / \mathrm{D}_{0}\right)^{4} /\left(1-\left(\mathrm{D} / \mathrm{D}_{0}\right)^{4}\right)=\mathrm{x} \mathrm{D}^{4} /\left(\mathrm{D}_{0}{ }^{4}-\mathrm{D}^{4}\right)
$$

substituting the given parameter values gives

$$
\mathrm{h}=(0.3)\left(0.009^{4}\right) /\left(0.01^{4}-0.009^{4}\right)=0.57 \mathrm{~m}
$$

So the height of the water above the tap is 0.57 m or 57 cm.

One way of measuring a person's body fat content is by "weighing" them under water. This works because fat tends to float on water as it is less dense than water. On the other hand muscle and bone tend to sink as they are more dense. Knowing your "weight" under water as well as your real weight out of water, the percentage of your body's volume that is made up of fat can easily be estimated. This is only an estimate since it assumes that your body is made up of only two substances, fat (low density) and everything else (high density). The "weight" is measured by spring balance both inside and outside the water. Quotes are placed around weight to indicate that the measurement read on the scale is not your true weight, i.e. the force applied to your body by gravity, but a measurement of the net downward force on the scale.
Q. 10 A-p;B-q;C-t;D-s

Pressure varies with height $\Rightarrow P=\rho g h$ and is horizontal with acceleration $\Rightarrow P=\rho \ell a$ so on (A) $\rho g h$ part is zero while average force of $\rho a x$ is

$$
\left[\frac{0+\rho \ell a}{2}\right]\left[\ell^{2}\right]
$$

$=\frac{\ell \rho \mathrm{a}}{2}\left(\ell^{2}\right)=\frac{\left(\rho \ell^{3}\right)}{2} \mathrm{a}=\frac{\mathrm{ma}}{2}$
In (B) $\rho \ell$ a part is zero while average force of $\rho g x$ is

$$
\left[\frac{0+\rho \mathrm{g} \ell}{2}\right]\left[\ell^{2}\right]=\frac{\rho \mathrm{g}}{2}\left(\ell^{3}\right)
$$

$$
=\frac{\rho\left(\ell^{3}\right)}{2}(\mathrm{~g})=\frac{\mathrm{ma}}{2}
$$

Similarly for other part.
Q. 11 A-q;B-p;C-r;D-s
(A) On ABCD avg pressure $=\left[\frac{0+\rho_{1} g h}{2}\right]$

So $F=\left[\frac{\rho_{1} g h}{2}\right][\ell h]=\frac{\rho_{1} \mathrm{gh}^{2} \ell}{2}$
(B) No contact of ρ_{2} and not any pressure on ABCD due to ρ_{2}
(C) On CDEF due to ρ_{1}, at every point pressure is ρ_{1} gh so average is also ρ_{1} gh
so $\mathrm{F}=\left(\rho_{1} \mathrm{gh}\right)(\mathrm{h} \ell)=\rho_{1} \mathrm{gh}^{2} \ell$
(D) On CDEF force due to liquid of density ρ_{2} is $\frac{\left[\rho_{2} g h^{2} \ell\right]}{2}$

NUMERICAL VALUE BASED

Q. $1 \quad$ [0800]

In both cases, Weight = Bouyant force
Initially, $\quad \rho_{b} V g=\rho_{w}\left(\frac{2}{3} V\right) g \Rightarrow \rho_{b}=\frac{2}{3} \rho_{w}$
After wards, $\quad \rho_{\mathrm{b}} \mathrm{Vg}=\rho_{\text {oil }}\left(\frac{5 \mathrm{~V}}{6}\right) \mathrm{g}$
$\Rightarrow \frac{2}{3} \rho_{w}=\rho_{\text {oil }} \times \frac{5}{6}$
$\left.\Rightarrow \rho_{\text {oil }}=\frac{4}{5} \rho_{\mathrm{w}}=\frac{4}{5} \times 100=800 \mathrm{~kg} / \mathrm{m}^{3}.\right]$
Q. 2 [5]
$30-\left(25+x_{0}\right)=5-x_{0}$

$\mathrm{V}=\frac{32}{0.4}=80 \mathrm{cc}$
$\mathrm{A}=16 \mathrm{~cm}^{2}$
$\mathrm{kx}_{0}+10^{3} \times 16 \times 10^{-4} \times \mathrm{x}_{0} \times 10=32 \times 10^{-3} \times 10$
$\mathrm{x}_{0}(48+16)=32 \times 10^{-2}$
$\mathrm{x}_{0}=\frac{32}{64} \mathrm{~cm}=5 \mathrm{~mm}$
Q. 3 [400]
$P_{L} \times 6 \times 10^{2} g=600 \mathrm{~g}$
$\mathrm{mg}+600 \mathrm{~g}=\mathrm{P}_{\mathrm{L}} \times 1000 \mathrm{~g}$
$\mathrm{m}=1000-600=400 \mathrm{gm}$
Q. 4 [250]
$\left[\frac{(500 \mathrm{~g})}{1.5 \times 0.8}\right]=\frac{\mathrm{F}}{0.06}$
$\Rightarrow \quad \mathrm{F}=250 \mathrm{~N}$
Q. 5 [0006]
$\mathrm{Mg}=\mathrm{mg}+\mathrm{B}$
$\mathrm{Mg}=\mathrm{mg}+\mathrm{p}_{2} \times \frac{\mathrm{M}}{\mathrm{p}_{1}} \mathrm{~g}$
$M\left(1-\frac{p_{2}}{p_{1}}\right)=m=6 \mathrm{~kg}$
Q. 6 [720]
$\left(\pi R^{2} H-\frac{2}{3} \pi R^{3}\right) \times \mathrm{d} \times \mathrm{g}$
$\pi \mathrm{R}^{2}\left[\mathrm{H}-\frac{2}{3} \mathrm{R}\right] \times 10^{4}$
$=\pi \times 0.09 \times 10^{4}\left[1-\frac{2}{3} \times 0.3\right]$
$\pi \times 900 \times 0.8=720 \pi$
Q. 7 [40]

$$
\begin{aligned}
& m g=\rho_{1} \times 0.5 \mathrm{~V}_{0} g \Rightarrow \rho_{1}=\frac{2 \mathrm{~m}}{\mathrm{~V}_{0}} \\
& \mathrm{mg}=\rho_{2} \times \frac{\mathrm{V}_{0}}{3} \mathrm{~g} \\
& \rho=\frac{\rho_{1} \mathrm{~V}+\rho_{2} \mathrm{~V}}{2 \mathrm{~V}}=\frac{\rho_{1}+\rho_{2}}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{mg}=\rho \mathrm{Vg}=\frac{\left(\rho_{1}+\rho_{2}\right) \mathrm{Vg}}{2} \\
& \Rightarrow \quad \mathrm{~m}=\frac{1}{2}\left(\frac{2 \mathrm{~m}}{\mathrm{~V}_{0}}+\frac{3 \mathrm{~m}}{\mathrm{~V}_{0}}\right) \mathrm{V} \\
& \mathrm{~m}=\frac{5 \mathrm{mV}}{2 \mathrm{~V}_{0}} \\
& \left.\mathrm{~V}=0.4 \mathrm{~V}_{0} \quad \Rightarrow \quad 40 \%\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\rho \mathrm{A}}{100} \times 2 \mathrm{gh} \\
& \mathrm{p}=\frac{\rho \mathrm{A}}{100} \times 2 \mathrm{~g} \int \mathrm{hdt}=\frac{\rho \mathrm{A}}{100} \times 2 \mathrm{~g} \int \mathrm{~h} \times \frac{\mathrm{dt}}{\mathrm{dh}} \times \mathrm{dh} \\
& \frac{\mathrm{dh}}{\mathrm{dt}} \times \mathrm{A}=\sqrt{2 \mathrm{gh}} \times \frac{\mathrm{A}}{100} \\
& \frac{\mathrm{dh}}{\mathrm{dt}}=\frac{\sqrt{2 \mathrm{gh}}}{100}
\end{aligned}
$$

Q. 8 [6]

$$
\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}
$$

$$
3 \times 30=\mathrm{N} \times 3 \times 10^{-7} \times 0.05
$$

$$
\frac{3 \times 10^{8}}{0.05}=\mathrm{N}
$$

$$
\mathrm{N}=6 \times 10^{9}
$$

Q. 9 [2375]
$\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2}$
$10 \times 5=5 \times \mathrm{v}_{2}$
$\mathrm{v}_{2}=10 \mathrm{~m} / \mathrm{s}$
$\frac{\mathrm{p}_{1}}{\mathrm{pg}}+\frac{\mathrm{v}_{1}^{2}}{2 \mathrm{~g}}=\frac{\mathrm{v}_{2}}{\mathrm{pg}}+\frac{\mathrm{v}_{2}^{2}}{2 \mathrm{~g}}$
$\frac{\mathrm{p}_{1}}{10^{4}}+\frac{25}{20}=\frac{2 \times 10^{5}}{10^{4}}+\frac{100}{20}$
$\frac{\mathrm{p}_{1}}{10^{4}}=25-1.25=23.75$
$\left.\mathrm{p}_{1}=2375 \times 10^{2} \mathrm{~Pa}\right]$
Q. 10 [100]
$v=\sqrt{2 g h}$

$\frac{\mathrm{dp}}{\mathrm{dt}}=\frac{\mathrm{dm}}{\mathrm{dt}} \mathrm{v}$
$=\rho \frac{\mathrm{A}}{100} \mathrm{v}^{2}$

KVPY

PREVIOUS YEAR'S

Q. 1 (B)

F.B.D

$$
\begin{aligned}
& \xrightarrow[\rho]{\rho V \mathrm{~g}} \\
& \mathrm{kx}_{1}+\rho_{1} \mathrm{Vg}=\rho \mathrm{Vg} \\
& \text {....(1) } \\
& \mathrm{kx}_{2}+\rho_{2} \mathrm{Vg}=\rho V \mathrm{~g} \\
& \text { from (1) and (2) } \\
& \rho=\frac{\rho_{2} x_{1}-\rho_{1} x_{2}}{x_{1}-x_{2}}=\frac{\rho_{1} x_{2}-\rho_{2} x_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Q. 2 (B)
buyount force $\mathrm{B}=\mathrm{V} \rho_{l} \mathrm{~g}, \frac{\mathrm{~V}_{\text {cube }}}{\mathrm{V}_{\text {sphere }}}=\frac{\mathrm{a}^{3}}{\frac{4}{3} \pi \mathrm{R}^{3}}$
but it is given $6 a^{2}=4 \pi R^{2}$
so, $\frac{\mathrm{V}_{\text {cube }}}{\mathrm{V}_{\text {sphere }}}=\frac{\sqrt{\pi}}{\sqrt{6}}$
Q. 3 (A)

All are nearly at same height hence $P_{1}=P_{2}=P_{3}$
Q. 4 (D)

In an evacuated chamber, in absence of air, buoyancy force due to air on box is absent.
Q. 5 (B)

According to Bernoulli theorem
In the region of narrow cross section of pipe, KE of fluid will be greater and pressure energy will be lesser. \Rightarrow less pressure results into larger in size of air bubble and greater KE results its greater speed.
Q. 6 (D)

Blood pressure is gauge pressure $=190 \mathrm{~mm} \mathrm{Hg}$
Atmospheric pressure $=760 \mathrm{~mm} \mathrm{Hg}$
Actual pressure $=190+760 \mathrm{~mm} \mathrm{Hg}=950 \mathrm{~mm} \mathrm{Hg}=1.25$ $\times 760 \mathrm{mmHg}$
Q. 7 (C)

Since $\rho_{i}=0.9 \rho_{w}$

Minimum Length required $=0.8 \mathrm{~m}$.
Q. 8 (D)

Since bucket and water both are in state of free fall so water will not come out of the hole.
Q. 9 (A)

Pressure at the heart level $=100 \mathrm{~mm}$ of $\mathrm{Hg}=13.3 \mathrm{kPa}$ (given)

$$
\begin{aligned}
& \mathrm{P}_{\text {foot }}=\mathrm{P}_{\text {heart }}+\rho \mathrm{gh} \\
& =13.3+10^{3} \times 10 \times 1.3=26.3 \mathrm{kPa} \\
& \mathrm{P}_{\text {head }}=\mathrm{P}_{\text {heart }}-\rho \mathrm{gh} \\
& \quad=9.3 \mathrm{kPa}
\end{aligned}
$$

$$
\frac{\mathrm{P}_{\text {foot }}}{\mathrm{P}_{\text {head }}}=\frac{26.3}{9.3} \approx 3
$$

Q. 11 (C)
$\mathrm{R}=\mathrm{V}_{\mathrm{e}} \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=\sqrt{2 \mathrm{gh}} \sqrt{\frac{2 \mathrm{H}}{\mathrm{g}}}=2 \sqrt{\mathrm{hH}}$

So velocity $\mathrm{V}=-\frac{\mathrm{dR}}{\mathrm{dt}}=-2 \sqrt{\mathrm{H}} \frac{\mathrm{d} \sqrt{\mathrm{h}}}{\mathrm{dt}}$
$\mathrm{V}=-2 \sqrt{\mathrm{H}} \frac{1}{2} \sqrt{\mathrm{~h}} \frac{\mathrm{dh}}{\mathrm{dt}}=-\sqrt{\frac{\mathrm{H}}{\mathrm{h}}} \frac{\mathrm{dh}}{\mathrm{dt}}$
Now $\mathrm{AV}_{\mathrm{e}}=$ Rate of flow of volume
$\mathrm{A} \sqrt{2 \mathrm{gh}}=\mathrm{A}_{0}\left[\frac{-\mathrm{dh}}{\mathrm{dt}}\right]$
from (1) and (2)

$$
\mathrm{V}=\sqrt{\frac{\mathrm{H}}{\mathrm{~h}}} \frac{\mathrm{~A}}{\mathrm{~A}_{0}} \sqrt{2 \mathrm{gh}}=\frac{1}{100} \sqrt{2 \times 10 \times 5}=\frac{1}{10} \mathrm{~m} / \mathrm{s}
$$

Q. 12 (D)

$$
\tau_{1}=\int_{0}^{\mathrm{h}} \rho g(\mathrm{~h}-\mathrm{x})[L d x] \cdot \mathrm{x}=\rho g \mathrm{~L}\left[\mathrm{~h} \frac{\mathrm{x}^{2}}{2}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{\mathrm{h}}
$$

$$
\begin{aligned}
& =\rho g \mathrm{~L} \frac{\mathrm{~h}^{3}}{6} \\
& \tau_{2}=\int_{0}^{\mathrm{h} / 2} \rho g\left(\frac{\mathrm{~h}}{2}-x\right)\left[\frac{\mathrm{L}}{2} \mathrm{dx}\right] x=\rho g \frac{\mathrm{~L}}{2}\left[\frac{\mathrm{hx}^{2}}{4}-\frac{\mathrm{x}^{3}}{3}\right]_{0}^{\mathrm{h} / 2} \\
& =\rho g \frac{\mathrm{~L}}{2} \mathrm{~h}^{3}\left[\frac{1}{16}-\frac{1}{24}\right]=\frac{\rho g \mathrm{Lh}^{3} \times 8}{2 \times 16 \times 24}=\frac{\rho g \mathrm{Lh}^{3}}{16 \times 6}
\end{aligned}
$$

So, $\frac{\tau_{1}}{\tau_{2}}=16$
Q. 13 (B)

Using equation of continuity
$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$
where $\mathrm{A}_{1} \& \mathrm{~A}_{2}$ are cross-section area of region
I \& region-II.
as $\mathrm{A}_{2}<\mathrm{A}_{1}$
$\Rightarrow V_{2}>V_{1}$
Using Bernouilli.s equation
$\mathrm{P}+\frac{1}{2} \rho \mathrm{~V}^{2}=$ constant
as $\mathrm{V}_{2}>\mathrm{V}_{1}$
$\mathrm{P}_{2}<\mathrm{P}_{1}$
therefore pressure will be lower at constriction.
Q. 14 (B)

Let mass of each coin be m .
\therefore Location of center of mass after N coins are kept on lid from bottom of container is
$\frac{40 \mathrm{~m} \times 0+\mathrm{Nm} \times 9}{(40+\mathrm{N}) \mathrm{m}}=\frac{9 \mathrm{~N}}{40+\mathrm{N}} \mathrm{cm}$
Also height of submerged portion after keeping N coin on lid will be,
$\frac{3(40+\mathrm{N})}{40} \mathrm{~cm}$
\therefore Equilibrium will just be stable if
$\frac{3}{40} \frac{(40+\mathrm{N})}{2}=\frac{9 \mathrm{~N}}{(40+\mathrm{N})}$
$\Rightarrow 3 \mathrm{~N} 2-480 \mathrm{~N}+4800=0 \Rightarrow \mathrm{~N}=10.72$
Q. 15 (C)

$1.33 \operatorname{sini}=\sin r=\frac{2}{\sqrt{53}}$
Also, $\tan \mathrm{r}=\frac{2}{7}=\frac{1-\mathrm{y}}{4-\mathrm{x}} \Rightarrow \mathrm{y}=\frac{2 \mathrm{x}-1}{7}$
\therefore From equation (i)
$\frac{1.33 \mathrm{y}}{\sqrt{\mathrm{y}^{2}+\mathrm{x}^{2}}}=\frac{2}{\sqrt{53}} \Rightarrow(1.33)^{2} 53 \mathrm{y}^{2}=4\left(4 \mathrm{x}^{2}+\mathrm{y}^{2}\right)$
$\Rightarrow 89.7517 \mathrm{y}^{2}=4 \mathrm{x}^{2} \Rightarrow \mathrm{y}=\frac{2 \mathrm{x}}{\sqrt{89.7517}}$.
From equation (ii) \& (iii),
$\frac{2 \mathrm{x}-1}{7}=\frac{2 \mathrm{x}}{\sqrt{89.517}} \Rightarrow 14 \mathrm{x}=(2 \mathrm{x}-1) 9.47$
$\therefore \mathrm{x}=1.92$
\therefore volume of water filled $=\mathrm{pR}^{2} \mathrm{x}$

$$
=\left(3.14 \times 1^{2} \times 1.92\right) \mathrm{m}^{3}
$$

$\therefore \mathrm{Qt}=6.0288$ [Q is volume flow rate]
$\therefore \mathrm{t}=60.288 \mathrm{sec}$
so option C is the nearest value

JEE-MAIN

PREVIOUS YEAR'S

Q. $1 \quad$ (2)

Stress is developed only if the expansion is hindered.
Q. 2 [25600]

Initially $\frac{100 \mathrm{~g}}{\mathrm{~A}_{1}}=\frac{\mathrm{mg}}{\mathrm{A}_{2}}$
Initially $\frac{M g}{16 A_{1}}=\frac{m g}{\left(\frac{A_{2}}{16}\right)}$
$\frac{100 \times 16}{M}=\frac{1}{16}=M=25600 \mathrm{~kg}$
Q. 3 (1)
$\alpha_{\mathrm{A}}>\alpha_{\mathrm{B}}$
Length of both strips will decrease $\Delta \mathrm{L}_{\mathrm{A}}>\Delta \mathrm{L}_{\mathrm{B}}$

Q. 4 (3)
Q. 5 [6]
Q. 6 (2)

We have $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{B}}$. [Points A \& B at same horizontal level]

$$
\begin{aligned}
& \therefore \mathrm{P}_{\text {atm }}-\frac{2 \mathrm{~T}}{\mathrm{r}_{1}}+\rho g(\mathrm{x}+\Delta \mathrm{h})=\mathrm{P}_{\text {atm }}-\frac{2 \mathrm{~T}}{\mathrm{r}_{2}}+\rho g \mathrm{x} \\
& \therefore \rho g \Delta \mathrm{~h}=2 \mathrm{~T}\left[\frac{1}{\mathrm{r}_{1}}-\frac{1}{\mathrm{r}_{2}}\right] \\
& =2 \times 7.3 \times 10^{-2}\left[\frac{1}{2.5 \times 10^{-3}}-\frac{1}{4 \times 10^{-3}}\right] \\
& \therefore \Delta \mathrm{h}=\frac{2 \times 7.3 \times 10^{-2} \times 10^{3}}{10^{3} \times 10}\left[\frac{1}{2.5}-\frac{1}{4}\right] \\
& =2.19 \times 10^{-3} \mathrm{~m}=2.19 \mathrm{~mm}
\end{aligned}
$$

Hence option (2)

JEE-ADVANCED
 PREVIOUS YEAR'S

Q. 1 (A), (B), (D)

For equilibrium
$d_{A} v g+d_{B} v g=d_{F} v g+d_{F} v g$
$\Rightarrow d_{F}=\frac{d_{A}+d_{B}}{2} \Rightarrow$ Option (D) is correct
to keep the string tight
$d_{B}>d_{F}$ and $d_{A}<d_{F}$
Q. 2 (A,D)

On small sphere
$\frac{4}{3} \pi R^{3}(\rho) g+k x=\frac{4}{3} \pi R^{3}(2 \rho) g$
.(i)
on second sphere (large)
$\frac{4}{3} \pi R^{3}(3 \rho) g=\frac{4}{3} \pi R^{3}(2 \rho) g+k x$
...(ii)
by equation (i) and (ii)
$x=\frac{4 \pi R^{3} \rho g}{3 k}$

Comprehension (Q. No. 3 to 4)

Q. 3 (C)
$\mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

$$
\mathrm{A}_{1}=400 \mathrm{~A}_{2}
$$

$$
\begin{equation*}
400\left(5 \times 10^{-3}\right)=V_{2} \tag{C}
\end{equation*}
$$

$$
\Rightarrow \quad V_{2}=2 \mathrm{~m} / \mathrm{s}
$$

Q. 4 (A)

Pressure at A and B will be same

$$
P_{0}-\frac{1}{2} \rho_{a} v_{a}^{2}=P_{0}-\frac{1}{2} \rho_{\ell} v_{\ell}^{2}-\rho_{\ell} g h
$$

$$
\mathbf{v}_{\ell}=\sqrt{\frac{\rho_{\mathrm{a}}}{\rho_{\ell}}} \mathrm{v}_{\mathrm{a}}-2 \mathrm{gh}
$$

Q. 5 (C)

Match the column
When lift is at rest:

(P) $g_{\text {eff }}>g$
$\mathrm{d}=\sqrt{4 \mathrm{~h}_{1} \mathrm{~h}_{2}}=1.2 \mathrm{~m}$
(Q) $g_{\text {eff }}<g$
$\mathrm{d}=\sqrt{4 \mathrm{~h}_{1} \mathrm{~h}_{2}}=1.2 \mathrm{~m}$
(R) $g_{\text {eff }}=g$
$\mathrm{d}=\sqrt{4 \mathrm{~h}_{1} \mathrm{~h}_{2}}=1.2 \mathrm{~m}$
(S) $g_{\text {eff }}=0$

No water leaks out of the jar.
(C) P-1; Q— $1 ; \mathrm{R}-1 ; \mathrm{S}-4$
Q. 6 (B)
$\mathrm{h}_{1}+\mathrm{h}_{2}=0.29 \times 2+0.1$
$\mathrm{h}_{1}+\mathrm{h}_{2}=0.68$
$\Rightarrow \mathrm{P}_{0}+\rho_{\mathrm{k}} \mathrm{g}(0.1)+\rho_{\mathrm{w}} \mathrm{g}\left(\mathrm{h}_{1}-0.1\right)\left[\rho_{\mathrm{k}}=\right.$ density of kerosene \&
$\rho_{w}=$ density of water $]-\rho_{w} \mathrm{gh}_{2}=\mathrm{P}_{0}$
$\Rightarrow \rho_{\mathrm{k}} \mathrm{g}(0.1)+\rho_{\mathrm{w}} \mathrm{gh} \mathrm{h}_{1}-\rho_{\mathrm{w}} \mathrm{g} \times(0.1)$
$=\rho_{\mathrm{w}} \mathrm{gh}{ }_{2}$
$\Rightarrow 800 \times 10 \times 0.1+1000 \times 10 \times h_{1}$
$-1000 \times 10 \times 0.1=1000 \times 10 \times \mathrm{h}_{2}$
$\Rightarrow 10000\left(\mathrm{~h}_{1}-\mathrm{h}_{2}\right)=200$
$\Rightarrow \mathrm{h}_{1}-\mathrm{h}_{2}=0.02$
$\Rightarrow \mathrm{h}_{1}=0.35$
$\Rightarrow h_{2}=0.33$
So, $\frac{\mathrm{h}_{1}}{\mathrm{~h}_{2}}=\frac{35}{33}$
Q. 7 [9]

Applying Bernoulli's equation

$$
\begin{align*}
& P_{0}+\frac{1}{2} \rho v_{t}^{2}=P+\frac{1}{2} \rho v^{2} \\
& P_{0}-P=\frac{1}{2} \rho\left(v^{2}-v_{t}^{2}\right) \tag{i}
\end{align*}
$$

From equation of continuity
Also, $4 \mathrm{~S}_{\mathrm{t}} \mathrm{v}_{\mathrm{t}}=\mathrm{v} \times 3 \mathrm{~S}_{\mathrm{t}} \Rightarrow \mathrm{v}=\frac{4}{3} \mathrm{v}_{\mathrm{t}}$
From (i) and (ii)
$P_{0}-P=\frac{1}{2} \rho\left(\frac{16}{9} v_{t}^{2}-v_{t}^{2}\right)=\frac{1}{2} \rho \frac{7 v_{t}^{2}}{9}$
$\therefore \mathrm{N}=9$
Q. 8 [4]

$480 \times g=v \rho_{1} g$
$(480-N) g=v \rho_{2} g$
$\frac{480-\mathrm{N}}{480}=\frac{\rho_{2}}{\rho_{1}}$
$\left(1-\frac{N}{480}\right)=\frac{\mathrm{e}^{-\mathrm{h}_{2} / h_{0}}}{\mathrm{e}^{-\mathrm{h}_{1} / h_{0}}}=\mathrm{e}^{\frac{\mathrm{h}_{1}-\mathrm{h}_{2}}{\mathrm{~h}_{0}}}=\mathrm{e}^{\frac{50}{6000}}$
$1-\frac{\mathrm{N}}{480}=1-\frac{50}{6000} \Rightarrow \mathrm{~N}=\frac{50 \times 480}{6000}=4$
Q. 9 (A,D)

In $\triangle \mathrm{OAB}$
$\mathrm{R}^{2}=(\mathrm{R}-\mathrm{h})^{2}+\mathrm{r}^{2}$
$\mathrm{R}^{2}=\mathrm{R}^{2}-2 \mathrm{hR}+\mathrm{h}^{2}+\mathrm{r}^{2} \quad \Rightarrow 2 \mathrm{hR}=\mathrm{h}^{2}+\mathrm{r}^{2}$
$\Rightarrow \mathrm{R}=\frac{\mathrm{h}^{2}+\mathrm{r}^{2}}{2 \mathrm{~h}}$
Now considering equation of surface

$$
\begin{aligned}
& \mathrm{y}=\mathrm{y}_{0}+\frac{\omega^{2} \mathrm{r}^{2}}{2 \mathrm{~g}} \\
& \mathrm{~h}=\frac{\omega^{2} \mathrm{r}^{2}}{2 \mathrm{~g}}
\end{aligned}
$$

Now using: $\frac{\mu_{2}}{\mathrm{v}}-\frac{\mu_{1}}{\mathrm{u}}=\frac{\mu_{2}-\mu_{1}}{\mathrm{R}}$
$\Rightarrow \frac{1}{\mathrm{v}}+\frac{4}{3(\mathrm{H}-\mathrm{h})}=\frac{1-4 / 3}{-\mathrm{R}} \quad \Rightarrow \frac{1}{\mathrm{v}}=\frac{1}{3 \mathrm{R}}-\frac{4}{3 \mathrm{H}}$
$\Rightarrow \frac{1}{\mathrm{v}}=\frac{2 \mathrm{~h}}{3 \mathrm{r}^{2}}-\frac{4}{3 \mathrm{H}} \quad \Rightarrow \frac{1}{\mathrm{v}}=-\frac{4}{3 \mathrm{H}}\left[1-\frac{\omega^{2} \mathrm{H}}{4 \mathrm{~g}}\right]$
$\Rightarrow \mathrm{v}=\frac{3 \mathrm{H}}{4}\left[1+\frac{\omega^{2} \mathrm{H}}{4 \mathrm{~g}}\right]^{-1}$
Q. 10 (AC)
Q. $11 \quad$ (0.30)
Q. 12 (10.00)

Surface Tension and Viscosity

ELEMENTRY

Q. 1 (1)

Q. 2 (1)
Q. 3 (1)

Weight of spiders or insects can be balanced by vertical component of force due to surface tension.
Q. 4 (4)
$\mathrm{T}=\mathrm{T}_{0}(1-\alpha \mathrm{t})$
Q. 5 (1)

Energy needed = Increment in surface energy
$=($ surface energy of n small drops $)-$ (surface energy of one big drop)
$=n 4 \pi r^{2} T-4 \pi R^{2} T=4 \pi T\left(r^{2}-R^{2}\right)$
Q. 6 (3)

Work done to increase the diameter of bubble from d to D
$W=2 \pi\left(D^{2}-d^{2}\right) T=2 \pi\left[(2 D)^{2}-(D)^{2}\right] T=6 \pi D^{2} T$
Q. 7 (3)
$\mathrm{W}=8 \pi \mathrm{~T}\left(\mathrm{r}_{2}^{2}-\mathrm{r}_{1}^{2}\right)=8 \pi \mathrm{~T}\left[\left(\frac{2}{\sqrt{\pi}}\right)^{2}-\left(\frac{1}{\sqrt{\pi}}\right)^{2}\right]$
$\therefore \mathrm{W}=8 \times \pi \times 30 \times \frac{3}{\pi}=720 \mathrm{erg}$
Q. 8 (1)
Q. 9 (3)
Q. 10 (2)
Q. 11 (3)

Angle of contact is acute.
Q. 12 (3)

Since $\Delta \mathrm{P} \propto \frac{1}{\mathrm{R}}$
Q. 13 (2)
Q. 14 (1)

$$
\Delta \mathrm{P}=\frac{4 \mathrm{~T}}{\mathrm{r}} \Rightarrow \frac{\Delta \mathrm{P}_{1}}{\Delta \mathrm{P}_{2}}=4
$$

$\therefore \frac{r_{2}}{r_{1}}=4$ and $\frac{V_{1}}{V_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3}=\frac{1}{64}$
Q. 15 (3)

$$
\Delta \mathrm{P}=\frac{2 \mathrm{~T}}{\mathrm{R}}=\frac{2 \times 70 \times 10^{-3}}{1 \times 10^{-3}}=140 \mathrm{~N} / \mathrm{m}^{2}
$$

JEE-MAIN

OBJECTIVE QUESTIONS

Q. 1 (2)

After the portion A is punctured' the thread has 2 options as shown in the figures.

(i)

(ii)

Clearly, due to surface tension, the soap film wants to minimize the surface area which is happening in option (ii).

Hence the thread will become concave towards A.
Q. 2 (3)

We know that surface energy
$\mathrm{U}_{\mathrm{S}}=\mathrm{T} \times$ Area.
Here. as 2 films are formed because of ring. so
$\mathrm{U}_{\mathrm{S}}=\mathrm{T} \times 2 \times(\mathrm{A})$

$$
=5 \frac{\mathrm{~N}}{\mathrm{~m}} \times 2 \times 0.02 \mathrm{~m}^{2} .=0.2 \mathrm{~J}
$$

Q. 3 (4)

Insects use the surface tension force to keep floating.
Q. 4 (3)
$\mathrm{n} \times \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3} \ldots \ldots$ (i) $\{\because$ volumes are equal
and $\Delta \mathrm{A}=-\left[4 \pi \mathrm{R}^{2}-\mathrm{n} .4 \pi \mathrm{r}^{2}\right]$
where $\mathrm{W}=(\Delta \mathrm{A}) \times \mathrm{T}$.

$$
=-4 \pi\left[\mathrm{n}^{2 / 3} \mathrm{r}^{2}-\mathrm{n} \cdot \mathrm{r}^{2}\right] \times \mathrm{T}=4 \pi \mathrm{r}^{2} \mathrm{~T} \cdot \mathrm{n}^{2 / 3}\left[\mathrm{n}^{1 / 3}-1\right] .
$$

Now $R^{2}=n^{2 / 3} \cdot r^{2} ; \quad$ so $W=4 \pi R^{2} T\left[n^{1 / 3}-1\right]$.

Q. $5 \quad$ (4)

In the satellite, $\mathrm{g}_{\text {eff }}$ becomes zero but the surface tension still prevails. Hence the water will experience only surface Tension force which will push it fully outward.
Q. 6 (1)

Since the contact angle in both cases remains the same.

$\mathrm{F}_{\mathrm{s}} \cos \theta=\mathrm{Mg} \Rightarrow \mathrm{T} \times 2 \pi \mathrm{R} \cos \theta=\mathrm{Mg}$(i)
after doubling the radius $\mathrm{T} \times 2 \pi(2 \mathrm{R}) \cos \theta \quad=\mathrm{M}^{\prime} \mathrm{g}$
$=\mathrm{M}^{\prime}=2 \mathrm{M}$.
Q. $7 \quad$ (2)

Water will rise to a height more than h when downward force ($\mathrm{mg}_{\text {eff }}$) becomes lesser than mg .
so in a lift accelerating downwards, $g_{\text {eff }}$ is $\left(g-a_{0}\right)$. Hence capillary rise is more.
On the poles $g_{\text {eff }}$ is even more than g. Hence the capillary will even drop.
Q. $8 \quad$ (1)

When the capillary rise is ' h ' that means the force of surface tension (F) is supporting the height ' h ' of liquid level.
Now if the whole capillary is taken out the liquid tries to come out due to gravity from the bottom point.

But force of surface tension ' F ' now becomes 2 F in the upward direction. Hence 2 F can support a maximum of '2h' height even if ℓ is very high. So ' h ' will be 2 h if $\ell>\mathrm{h} \&$ will be $\mathrm{h}+\ell$ only if ℓ is lesser than h .
Q. 9

By balancing forces
$\mathrm{T} \times(2 \ell) \times(\cos \theta)=\mathrm{dx}$ ℓ h g
we get $\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{xdg}}$.
Q. 10

Energy released $=(\Delta \mathrm{A}) \times \sigma\{\sigma=$ surface tension $\}$ Let us say n no. of small drops coalesced.
$\Rightarrow \mathrm{n} . \frac{4}{3} \pi \mathrm{a}^{3}=\frac{4}{3} \pi \mathrm{~b}^{3}$
$\Rightarrow \mathrm{b}=\mathrm{a} \cdot \mathrm{n}^{1 / 3}$
$\Rightarrow \mathrm{n}=\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{3}$
$\Delta \mathrm{A}=4 \pi \mathrm{~b}^{2}-\mathrm{n} .4 \pi \mathrm{a}^{2}$
\{this is $-v e$, hence
energy is released \}
$=4 \pi \mathrm{a}^{2}\left(\mathrm{n}^{2 / 3}-\mathrm{n}\right)$
$\Rightarrow \mathrm{U}=4 \pi \mathrm{a}^{2} \mathrm{~T}\left(\mathrm{n}-\mathrm{n}^{2 / 3}\right)=4 \pi \mathrm{a}^{2} \mathrm{~T}\left[\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{3}-\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{2}\right]$
This U converts to K.E.
Hence $\frac{1}{2} \rho \cdot \frac{4}{3} \pi b^{3} V^{2}=4 \pi a^{2} T \frac{b^{2}}{a^{2}}\left(\frac{b-a}{a}\right)$.
$\Rightarrow \mathrm{V}=\sqrt{\frac{6 \mathrm{~T}}{\rho}\left(\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}\right)}$
Q. 11 (4)

P_{A} has to be equal to $\mathrm{P}_{\mathrm{B}} . \mathrm{P}_{\mathrm{A}}=\mathrm{P}_{0}+\rho g h$
Now $P_{C}-P_{0}=\frac{4 \sigma}{r}$
\because soap bubble has 2 films
and
$P_{C}=P_{B} \because$ same air is filled
$\Rightarrow \mathrm{P}_{0}+\frac{4 \sigma}{\mathrm{r}}=\mathrm{P}_{0}+\rho \mathrm{gh}$
get $\sigma=\frac{\rho g h r}{4}$

Q. 12 (3)

When charge is given to a soap bubble (whether positive or negative), these charges experience repulsive forces due to the other charges. Hence they tend to move out. Hence the size of bubble increases.
Q. 13 (4)

Equating pressures on the shaded portion :

$$
\frac{4 \sigma}{r_{1}}-\frac{4 \sigma}{r_{2}}=\frac{4 \sigma}{R}
$$

$$
\text { get } R=\frac{r_{2} r_{1}}{r_{2}-r_{1}}
$$

Q. 14 (2)

By equating volume : $\frac{4}{3} \pi R^{3}=8 \times \frac{4}{3} \pi r^{3}$
get $\mathrm{r}=\mathrm{R} / 2$.
Now pressure difference in $A=\frac{4 \sigma}{R}$
and that in $B=\frac{4 \sigma}{R / 2}=2 \times$ pressure difference in A.
Q. 15 (2)

$P_{\text {inside bubble }}-P_{A}=\frac{2 T}{r}$

$$
\begin{aligned}
& \text { and } P_{A}=P_{\text {atm }}+\rho g h . \\
& \Rightarrow P_{\text {inside bubble }}=P+\rho g h+\frac{2 T}{r}
\end{aligned}
$$

Q. 16 (3)

$P_{A}=P_{0}+\frac{4 \sigma}{r} ; P_{B}=P_{0}+\frac{4 \sigma}{R}\left\{P_{0}=\right.$ atmospheric pressure $\}$.
Clearly $\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}} ;$ so air will flow from A to B.
As r decreases; pressure will become more and hence more flow of air from A to B.
Ultimately bubble A collapses and B becomes bigger in size.

Q. 17 (3)

Q. 18 (1)

Lets say, initially, the pressure due to air inside the bubble is $\mathrm{P}_{\text {air }}$.
$\Rightarrow P_{\text {air }}-P_{1}=\frac{4 T}{r}$
Finally, the radius becomes half ; so volume becomes
$\frac{1}{8}$ th and hence pressure becomes $8 \mathrm{P}_{\text {air }}$.
So, $8 \mathrm{P}_{\text {air }}-\mathrm{P}_{2}=\frac{4 \mathrm{~T}}{\mathrm{r} / 2}$
.........(ii)
Solving (i) and (ii)
get $P_{2}=8 P_{1}+\frac{24 r}{r}$.
Q. 19 (4)

When the excess pressure at the hole becomes equal to the pressure of water height ;then only water will start coming out of the holes : [atm pressure on both sides is same].
$\Rightarrow \rho$ hg $=\frac{2 \sigma}{r}$
$\Rightarrow h=\frac{2 \sigma}{\rho \mathrm{rg}}$
$=\frac{2 \times 70 \times 10^{-3} \times \frac{\mathrm{N}}{\mathrm{m}}}{1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \times\left(\frac{0.1}{2}\right) \times 10^{-3} \times 10}=0.28 \mathrm{~m}$.
Q. 20 (3)

$800=\eta \mathrm{A} \cdot \frac{1.5}{\mathrm{x}}$
$2400=\eta \mathrm{A} \frac{\mathrm{v}}{\mathrm{x}}$
$\mathrm{v}=4.5 \mathrm{~cm} / \mathrm{sec}$.
Q. 21 (4)
$\mathrm{F}_{\mathrm{R}}=\mathrm{K} \cdot \pi \mathrm{r}^{2} \cdot \mathrm{v}^{2}=\rho \frac{4}{3} \pi \mathrm{r}^{3} \mathrm{~g}$
$v \alpha \sqrt{r}$
Q. 22 (2)
$2 \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3}$
$\mathrm{R}=2^{1 / 3} \cdot \mathrm{r}$
$\mathrm{v} \propto \mathrm{r}^{2}$
$\mathrm{v} \propto 4^{1 / 3}$
Q. 23 (4)
$\mathrm{V}_{\mathrm{T}}=\frac{2}{9} \frac{\mathrm{r}^{2} \mathrm{~g}}{\eta}(\rho-\sigma)$
$=\frac{2}{9} \frac{(0.003)^{2} \times 10}{1.260}(1260)$
$\mathrm{v}_{\mathrm{T}}=0.02 \mathrm{~m} / \mathrm{sec}$.
\therefore Time $=\frac{0.1}{0.02}=5 \mathrm{sec}$.

JEE-ADVANCED

OBJECTIVE QUESTIONS

Q. 1
 (D)

The small portion of film is approximately a straight part. Balancing forces on it:

F denotes tension. T denotes surface tension.
$\mathrm{T} \times 2(\mathrm{~d} \ell)$ is the surface tension force because 2 layers are formed.
So $2 \mathrm{~F} \sin (\mathrm{~d} \theta)=\mathrm{T} \times[2 \times \mathrm{R}(2 \mathrm{~d} \theta)]$
we get $;(\sin (d \theta) \approx d \theta$. for small $d \theta)$
so $\mathrm{F}=\mathrm{T} \times 2 \mathrm{R}$.

Q. 2 (C)

The FBD of disc is shown in the figure. The net upward surface tension force
$=\mathrm{F}_{\mathrm{S}} \cos \theta=(\mathrm{T} \times 2 \pi \mathrm{r}) \cos \theta$.
so $\mathrm{F}_{\mathrm{S}} \cos \theta+\mathrm{W}=\mathrm{mg}=\mathrm{W}_{\text {disc }}$

$$
=\mathrm{F}_{\mathrm{S}} \cos \theta=(\mathrm{T} \times 2 \pi \mathrm{r}) \cos \theta
$$

$$
\mathrm{F}_{\mathrm{s}} \cos \theta+\mathrm{W}=\mathrm{mg}=\mathrm{W}_{\text {disc }}
$$

Q. 3 (B)

$\cos \theta=\frac{\mathrm{R}-\mathrm{h}}{\mathrm{R}}$
$\theta=\cos ^{-1}\left(\frac{\mathrm{R}-\mathrm{h}}{\mathrm{R}}\right)$
Q. 4 (A)

In the shown diagram.

$P_{C}=P_{B}$
$P_{0}-\frac{2 T}{r_{1}}+\rho g h=P_{0}-\frac{2 T}{r_{2}}$
Here, we may not know in advance which tube will rise above the other, but lets say the liquid level is higher in thinner tube.
so $2 T\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)=-\rho g h$.
$\Rightarrow \mathrm{T}=\frac{\rho g h r_{1} r_{2}}{2\left(r_{2}-r_{1}\right)}$
as $r_{2}>r_{1}$; so we assumed correctly
Q. 5 (B)

$$
\frac{2 T}{R}=h \rho g
$$

Radius of Meniscus
Q. 6 (A)

Let (a) and (b) coalesce to form (c).

By mole conservation :

$$
\begin{gather*}
\quad P_{a} \cdot a^{3}+P_{b} \cdot b^{3}=P_{c} \cdot c^{3} . \tag{i}\\
\text { Also } P_{a}=P_{0}+\frac{4 \gamma}{a} \tag{ii}\\
P_{b}=P_{0}+\frac{4 \gamma}{b} \tag{iii}\\
P_{c}=P_{0}+\frac{4 \gamma}{c} \tag{iv}
\end{gather*}
$$

Putting there values :

$$
\begin{aligned}
& \quad\left(P_{0}+\frac{4 \gamma}{a}\right) a^{3}+\left(P_{0}+\frac{4 \gamma}{b}\right) b^{3}=\left(P_{0}+\frac{4 \gamma}{c}\right) c^{3} \\
& \Rightarrow \\
& P_{0}\left[a^{3}+b^{3}-c^{3}\right]+4 \gamma\left[a^{2}+b^{2}-c^{2}\right]=0 \\
& \text { also } c^{3}-\left(b^{3}+a^{3}\right)=\frac{3 v}{4 \pi} \text { and } c^{2}-\left(a^{2}+b^{2}\right)=\frac{s}{4 \pi} .
\end{aligned}
$$

Putting there values:
$\mathrm{P}_{0}\left(\frac{-3 v}{4 \pi}\right)+4 \mathrm{~T}\left(\frac{-\mathrm{S}}{4 \pi}\right)=0 \Rightarrow 3 \mathrm{P}_{0} \mathrm{~V}+4 \mathrm{ST}=0$
Q. 7 (B)

Clearly the surface tension force on
A soap - bubble with a radius ' r ' is placed on another bubble with a radius R (figure). Angles between

Hemisphere $=F_{S}=(2 T) .(2 \pi r)\{2$ layers are formed $\}$.

$$
\begin{aligned}
& \Rightarrow \mathrm{F}_{\mathrm{S}}=2 \times 500 \frac{\mathrm{~N}}{\mathrm{~m}} \times 2 \times 3.14 \times 5 \mathrm{~m} \\
& \quad \approx 30,000 \mathrm{~N} \approx 3000 \mathrm{~kg} . \mathrm{wt}
\end{aligned}
$$

Q. 8 (C)

$h \rho g=\frac{2 T \times 2}{0.1}$
$\mathrm{h} \times 1000 \times 10=\frac{2 \times 75 \times 10^{-3} \times 2}{0.1 \times 10^{-3}}$
$h=\frac{300}{1000}-0.3 \mathrm{~m}=30 \mathrm{~cm}$.
Q. 9 (C)
$P_{e x i}=\frac{4 T}{R}$
$4 \pi \mathrm{R}^{2} \mathrm{~d}=\frac{4}{3} \pi \mathrm{r}^{3}$
$\left(3 R^{2} d\right)^{1 / 3}=r$
$P_{e f}=\frac{2 T}{r} \therefore \quad$ Ratio $=\frac{R}{2 r}=\left(\frac{R}{24 d}\right)^{1 / 3}$
Q. 10 (A)
$\eta \mathrm{a}^{2} \frac{\mathrm{v}}{\mathrm{t}}=\mathrm{mg} \sin 37^{\circ}$
$\eta a^{2} \frac{v}{t}=\rho a^{3} g \cdot \frac{3}{5}$
$\eta=\frac{3 \rho a g t}{5 v}$
Q. 11 (A)
$\mathrm{a}_{\text {avg }}=\frac{\mathrm{V}_{\mathrm{T}}-0}{\mathrm{~T}}$
$a_{\text {air }}=\frac{m g-f_{B}}{m}=g-\frac{F_{B}}{m}=g-\frac{v \rho_{L} g}{v \rho_{S} g}=g-\frac{\rho_{L}}{\rho_{S}} g$
$a_{\text {air }}=\frac{g\left(\rho_{\mathrm{s}}-\rho_{\mathrm{L}}\right)}{\rho_{\mathrm{s}}}=\frac{2 \mathrm{v}_{\mathrm{T}}}{\mathrm{T}}$
$a_{\text {air }}=\frac{g\left(\rho_{s}-\rho_{\mathrm{L}}\right)}{\rho_{\mathrm{s}}}=2 \cdot \frac{2}{9} \frac{\mathrm{r}^{2}}{\eta} \cdot \frac{9}{\mathrm{~T}}\left(\rho_{\mathrm{s}}-\rho_{\mathrm{r}}\right)$
$\mathrm{T}=\frac{4}{9} \frac{\rho r^{2}}{\eta}$
Q. 12 (A)
$m g=m ' g+6 \pi \eta r v$
$\frac{m-m^{\prime}}{r} \times v$
Q. 13 (C)
$a=g-\frac{v \rho_{\mathrm{L}} g}{m}-6 \pi \eta \mathrm{rv}$
straight line
Q. 14 (D)
Q. 15 (B)
$F=\eta A \frac{d v}{d x}$
$=1 \times 100 \times 10^{-4} \times \frac{7 \times 10^{-2}}{1 \times 10^{-3}}$
F $=0.7 \mathrm{~N}$

JEE-ADVANCED

MCQ

Q. 1 (A,B,C)

Force of cohesion keeps the molecules of a material bounded together and does not let them stick to the solid as force of adhesion is lesser.
-
Cohesion more than adhesion

adhesion more than cohesion

Q. 2 (A, B, D)

Nature of liquid and material tube determine whether force of cohesion is more or force of adhesion is more. The inner radius also determines the rise of capillary as
$\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{r} \rho \mathrm{g}}$ depends on radius r .
If the length is not sufficient rise will be depends length also.
Q. 3 (A, D)

When ever two drops coalesce to make a bigger drop. surface area is reduced, hence energy is released.

NUMERICAL VALUE BASED

Q. 1 [6]

$2 \pi\left(r_{1}+r_{2}\right) T=\rho\left(\pi\left(r_{2}^{2}-r_{1}^{2}\right)\right) g H$

$$
\Rightarrow \mathrm{H}=\frac{2 \mathrm{~T}}{\left(\mathrm{r}_{2}-\mathrm{r}_{1}\right) \rho \mathrm{g}}
$$

$$
\Rightarrow \quad \mathrm{H}=6 \mathrm{~cm}
$$

Q. 2 [574]
Q. 3 [1300]
Q. 4 [4]
Q. 5 [8]
$\mathrm{Mg}-\mathrm{T}-6 \pi \eta \mathrm{r}_{1} \mathrm{v}=0$

$m g+T-6 \pi \eta r_{2} v=0$
$\frac{\frac{4}{3} \pi\left(r_{1}^{3}+r_{2}^{2}\right) \times \rho g}{6 \pi \eta\left(r_{1}+r_{2}\right)}=v$
$\mathrm{v}=\frac{2}{9}\left(\mathrm{r}_{1}{ }^{2}-\mathrm{r}_{1} \mathrm{r}_{2}+\mathrm{r}_{2}{ }^{2}\right) \frac{\rho g}{\eta}$
$T=M g-6^{2} \pi \eta r_{1} \times \frac{2}{9}\left(r_{1}{ }^{2}-r_{1} r_{2}+r_{2}{ }^{2}\right) \frac{\rho g}{\eta}$
$=\frac{4}{3} \pi r_{1}{ }^{3} \times \rho g-\frac{4 \pi}{3} \rho g\left[r_{1}{ }^{3}-r_{1}{ }^{2} r_{2}+r_{2}{ }^{2} r_{1}\right]$
$=\frac{4}{3} \pi \operatorname{gr}\left[\mathrm{r}_{1}{ }^{2} \mathrm{r}_{2}-\mathrm{r}_{2}{ }^{2} \mathrm{r}_{1}\right]$
$=\frac{4}{3} \pi \mathrm{rgr}_{1}{ }^{2}\left[\mathrm{r}_{2}-\frac{\mathrm{r}_{2}^{2}}{\mathrm{r}_{1}}\right]$
$\frac{\mathrm{dT}}{\mathrm{dr}_{2}}=0 \Rightarrow \frac{4}{3} \pi \mathrm{gr}_{1}{ }^{2}\left[1-\frac{2 \mathrm{r}_{2}}{\mathrm{r}_{1}}\right]=0$
$\mathrm{r}_{1}=2 \mathrm{r}_{2}$
$\frac{M}{m}=8$
Q. 6 [50]
$6 \pi \eta r v=B=\frac{4}{3} \pi r^{3} P_{L} g$
$\eta=\frac{2}{9} \mathrm{r}^{2} \frac{\mathrm{P}_{\mathrm{L}} \mathrm{g}}{\mathrm{v}}$
$=\frac{2}{9} \times \frac{(0.9)^{2} \times 1.75 \times 1000}{0.7}=50$ poise

KVPY

PREVIOUS YEAR'S

Q. $1 \quad$ (A)

$\mathrm{mg}^{\prime}-\mathrm{kv}^{2}=\frac{\mathrm{mdv}}{\mathrm{dt}}$
Q. 2 (C)

Check dimensionally
Q. 3 (D)

Let X is thickness of soap film for equilibrium. Gravity force = buoyancy force

$$
\begin{align*}
& \frac{4}{3} \pi\left(10^{-2}\right)^{3} \times 0.18+4 \pi\left(10^{-2}\right)^{2} \\
\Rightarrow & \frac{4}{3} \pi\left(10^{-2}\right)^{3}(1.23) \\
\Rightarrow & \frac{4}{3} \pi\left(10^{-2}\right)(\mathrm{x})(1000) \\
\Rightarrow & \frac{4}{3} \pi\left(10^{-6}\right) \tag{1.08}
\end{align*}
$$

Q. 4 (C)

Due to soap bubble surface tension is reduced therefore in that area. Black paper powder will sink.
Q. 5 (D)
$\frac{1}{2} \rho v \times \pi R^{2}=4 \pi R T \Rightarrow v=\sqrt{\frac{8 T}{\rho R}}$
(Here in question v is asked)
Q. 6 (A)
$\mathrm{F}_{\mathrm{a}}=\mathrm{K} \rho_{\mathrm{a}} \mathrm{v}^{2} \mathrm{R}^{2}=\mathrm{K} \rho_{\mathrm{a}} \mathrm{v}^{2} \mathrm{M}^{2 / 3} \& \mathrm{~W}=\mathrm{Mg}$
When velocity becomes constant

$$
\begin{aligned}
& \mathrm{W}=\mathrm{F}_{\mathrm{a}} \\
& \Rightarrow \mathrm{Mg}=\mathrm{K}_{\mathrm{a}} \mathrm{v}^{2} \mathrm{M}^{2 / 3} \\
& \Rightarrow \mathrm{v}^{2} \propto \mathrm{M}^{1 / 3} \Rightarrow \mathrm{v} \propto \mathrm{M}^{1 / 6} \\
& \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\left(\frac{250}{125}\right)^{1 / 6} \Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=(2)^{1 / 6}
\end{aligned}
$$

Q. 7 (B)

The steel ball will get terminal velocity when the net force on the ball is zero. So, in distance-time graph, slope become constant.
From graph :

$$
\mathrm{V}=\frac{0.4-0.3}{1.9-1.6} \approx 0.33 \mathrm{~m} / \mathrm{s}
$$

JEE-MAIN

PREVIOUS YEAR'S
Q. 1 (1)

$$
\begin{aligned}
& \mathrm{n} \frac{4}{3} \pi \mathrm{r}^{3}=\frac{4}{3} \pi \mathrm{R}^{3} \\
& \left(\mathrm{n}^{1 / 3}\right) \mathrm{r}=\mathrm{R}
\end{aligned}
$$

$\Delta \mathrm{u}$ loss

$=\mathrm{T}$ (change in surface area)
$=T\left(n 4 \pi r^{2}-4 \pi R^{2}\right)$

$$
\begin{aligned}
& =T 4 f a ̀\left(n r^{2}-R^{2}\right) . \\
& \Delta U=4 \pi T\left[\left(\frac{R}{r}\right)^{3} r^{2}-R^{2}\right] \\
& \Delta U=4 \pi T \frac{\left[\frac{R^{3}}{r}-R^{2}\right]}{J} \\
& \frac{\Delta U}{V}=\frac{4 \pi T\left[\frac{R^{3}}{r}-R^{2}\right]}{J \times \frac{4}{3} \pi R^{3}}=\frac{3 T}{J}\left[\frac{1}{r}-\frac{1}{R}\right]
\end{aligned}
$$

Q. 2 (4)

The nature of flow is determined by Reynolds Number.
$R_{e}=\frac{\rho v D}{\eta}=\frac{\rho(Q / A) D}{\eta}=\frac{\rho Q D}{A \eta}$
$\left[\begin{array}{ll}\rho \rightarrow \text { density of fluid } ; & \eta \rightarrow \text { coefficient of } \\ \mathrm{v} \rightarrow \text { velocity of flow } \\ D \rightarrow \text { Diameter of pipe }\end{array}\right]$
From NCERT

$$
\begin{array}{ll}
\text { If } \mathrm{Re}<1000 & \rightarrow \text { flow is steady } \\
1000<\mathrm{Re}<2000 & \rightarrow \text { flow becomes unsteady } \\
\mathrm{Re}>2000 & \rightarrow \text { flow is turbulent }
\end{array} \quad \begin{aligned}
& \mathrm{R}_{\text {e initial }}=10^{3} \times \frac{0.18 \times 10^{-3}}{\pi \times\left(0.5 \times 10^{-2}\right)^{2} \times 60} \times \frac{1 \times 10^{-2}}{10^{-3}}
\end{aligned}
$$

$=382.16$

$$
\begin{aligned}
& \mathrm{R}_{\text {efinal }}=10^{3} \times \frac{0.48 \times 10^{-3}}{\pi \times\left(0.5 \times 10^{-2}\right)^{2} \times 60} \times \frac{1 \times 10^{-2}}{10^{-3}} \\
& =1019.09
\end{aligned}
$$

Q. 3 (1)

Excess pressure at common surface is given by
$P_{e x}=4 T\left(\frac{1}{a}-\frac{1}{b}\right)=\frac{4 T}{r}$
$\therefore \frac{1}{\mathrm{r}}=\frac{1}{\mathrm{a}}-\frac{1}{\mathrm{~b}}$
$r=\frac{a b}{b-a}$
Q. $5 \quad$ (1)
Q. 4

JEE-ADVANCED

PREVIOUS YEAR'S

Q. 1 (D)

Q. 2 (AD)

Consider a body of density ρ_{b} kept in density
ρ_{ℓ} whose viscosity is h and terminal velocity V . Then

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}}_{\text {viscous }}+\overrightarrow{\mathrm{F}}_{\text {mg }}+\overrightarrow{\mathrm{F}}_{\text {buyancy }}=0 \\
& \overrightarrow{\mathrm{~F}}_{\text {viscous }}+\rho_{\mathrm{b}} \frac{4}{3} \pi R^{3}(-\hat{j})+\rho \ell \frac{4}{3} \pi R^{3}(\hat{\mathrm{j}})=0 \\
& \therefore \overrightarrow{\mathrm{~F}}_{\text {vicous }}=\left(\rho_{\mathrm{b}}-\rho_{\ell}\right) \frac{4}{3} \pi R^{3}(\hat{j}) \Rightarrow 6 \pi \eta R V=\left(\rho_{6}-\rho \ell\right) \frac{4}{3} \pi R^{3}
\end{aligned}
$$

\therefore If $\rho_{\mathrm{b}}>\rho_{1}$ then $\quad \overrightarrow{\mathrm{F}}_{\text {viscous }} \uparrow \mathrm{V} \propto \frac{1}{\eta}$ \& if $\rho_{\mathrm{b}}<\rho_{\ell}$

$\vec{F}_{\text {viscos }} \downarrow$

as per given diagram we can say

$$
\begin{aligned}
& \sigma_{2}>\sigma_{1} ; \rho_{1}<\sigma_{1} \& \rho_{2}>\sigma_{2} \\
& \Rightarrow \rho_{2}>\sigma_{2}<\sigma_{1}>\rho_{1}
\end{aligned}
$$

\therefore If we put P in L_{2} where $\left|\vec{V}_{P}\right| \propto \frac{1}{\eta_{2}}$ when $\rho_{1}<\sigma_{2}$

$$
\therefore \overrightarrow{\mathrm{F}}_{\text {viscous }} \downarrow \quad \therefore \overrightarrow{\mathrm{V}}_{\mathrm{P}} \uparrow
$$

\therefore If we put Q in L_{1} where $\left|\vec{V}_{Q}\right| \propto \frac{1}{\eta_{1}}$ when $\rho_{2}<\sigma_{1}$

$$
\begin{gathered}
\therefore \overrightarrow{\mathrm{F}}_{\text {viscous }} \uparrow \quad \therefore \overrightarrow{\mathrm{V}}_{\mathrm{P}} \downarrow \\
\Rightarrow \frac{\left|\overrightarrow{\mathrm{~V}}_{\mathrm{P}}\right|}{\left|\overrightarrow{\mathrm{V}}_{\mathrm{Q}}\right|}=\frac{\eta_{1}}{\eta_{2}} \& \overrightarrow{\mathrm{~V}}_{\mathrm{P}} \cdot \overrightarrow{\mathrm{~V}}_{\mathrm{Q}}<0
\end{gathered}
$$

Q. 3 [3]
$V_{T}=\frac{2 r^{2} g(\sigma-\rho)}{9 \eta}$
$\therefore \frac{V_{P}}{V_{Q}}=\frac{1^{2}(8-0.8)}{3 \times\left(\frac{1}{2}\right)^{2}(8-1.6) \times \frac{1}{2}}=3$
Q. 4 [6]
$\mathrm{R}=\mathrm{K}^{1 / 3} \mathrm{r}$
$\Delta \mathrm{U}=\mathrm{S} . \mathrm{K} .4 \pi \mathrm{r} 2-\mathrm{S} .4 \pi \mathrm{R}^{2}$
$\Delta \mathrm{U}=4 \pi \mathrm{~S}\left[\mathrm{~K} \cdot \frac{\mathrm{R}^{2}}{\mathrm{~K}^{2 / 3}}-\mathrm{R}^{2}\right]$
$=0.1 \times 10^{-4}\left[\mathrm{~K}^{1 / 3}-1\right]=10^{-3}$
$\mathrm{K}^{1 / 3}-1=10^{2}$
$\mathrm{K}^{1 / 3}=101=\left(10^{\alpha}\right)^{1 / 3} \alpha=6$
Q. 5 (A,C)
$\frac{2 \sigma}{\mathrm{R}}=\rho \mathrm{gh} \quad[\mathrm{R}=$ Radius of meniscus $]$
$\mathrm{h}=\frac{2 \sigma}{\mathrm{R} \rho \mathrm{g}} \quad \mathrm{R}=\frac{\mathrm{r}}{\cos \theta}$
[$\mathrm{r}=$ radius of capillary, $\theta=$ contact angle]
$\mathrm{h}=\frac{2 \sigma \cos \theta}{\mathrm{r} \rho \mathrm{g}}$
(A) for given material, $\theta=$ constant
$\mathrm{h} \propto \frac{1}{\mathrm{r}}$
(B) h depend on σ
(C) if lift is going up with constant acceleration,
$\mathrm{g}_{\text {off }}=(\mathrm{g}+\mathrm{a})$
$h=\frac{2 \sigma \cos \theta}{r \rho(g+a)}$ It means h decreases.
(D) h is proportional to $\cos \theta \operatorname{Not} \theta$
Q. 6 (A, C, D)

Viscous force is given by $F=-\eta A \frac{d v}{d y}$ since h is very small therefore, magnitude of viscous force is given by
$F=\eta A \frac{D v}{\Delta y}$
$\therefore \mathrm{F}=\frac{\eta \mathrm{Au}_{0}}{\mathrm{~h}} \Rightarrow \mathrm{~F} \propto \eta \& \mathrm{~F} \propto \mathrm{u}_{0} ;$
$\mathrm{F} \propto \frac{1}{\mathrm{~h}}, \mathrm{~F} \propto \mathrm{~A}$
Since plate is moving with constant velocity, same force must be acting on the floor.
Q. 7 (A,C,D)
$\mathrm{h}=\frac{2 \mathrm{~T} \cos \theta}{\rho \mathrm{gR}} ; \mathrm{h}_{1}=\frac{2 \times 0.075 \times \cos 0^{\circ}}{1000 \times 10 \times 0.2 \times 10^{-3}}$
$\Rightarrow \mathrm{h}_{1}=75 \mathrm{~mm}$ (in T1) [If we assume entire tube of T1]
$\Rightarrow \mathrm{h}_{2}=\frac{2 \times 0.075 \times \cos 60^{\circ}}{1000 \times 10 \times 0.2 \times 10^{-3}}=37.5 \mathrm{~mm}$ (in T2) [If we assume entire tube of T2]
Option (1) : Since contact angles are different so correction in the height of water column raised in the tube will be different in both the cases, so option (1) is correct
Option (2) : If joint is 5 cm is above water surface, then lets say water crosses the joint by height h, then:
$\Rightarrow P_{0}-\frac{2 \mathrm{~T}}{\mathrm{r}}+\rho \mathrm{gh}+\rho \mathrm{g} \times 5 \times 10^{-2}$
$=\mathrm{P}_{0}$
$\Rightarrow \cos \theta=\frac{\mathrm{R}}{\mathrm{r}}, \mathrm{r}=\frac{\mathrm{R}}{\cos \theta}$
$\Rightarrow \rho g\left(\mathrm{~h}+5 \times 10^{-2}\right)=\frac{2 \mathrm{~T} \cos \theta}{\mathrm{R}}$
$\Rightarrow \mathrm{h}=\frac{2 \times 0.075 \times \cos 60}{0.2 \times 10^{-3} \times 1000 \times 10}-5 \times 10^{-2}$
$\Rightarrow \mathrm{h}=-\mathrm{ve}$, not possible, so liquid will not cross the interface, but angle of contact at the interface will change, to balance the pressure,
So option (2) is wrong.
Option (3) : If interface is 8 cm above water then water will not even reach the interface, and water will rise till 7.5 cm only in T 1 , so option (3) is right. Option (4) : If interface is 5 cm above the water in vessel, then water in capillary will not even reach the interface. Water will reach only till 3.75 cm , so option (4) is right.

Q. 8

[3.74]

Pressure at the bottom of disc = pressure due to surface tension
$\rho g h=T\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)$
$R_{1} \ggg R_{2}$
So $\frac{1}{\mathrm{R}_{1}} \lll \frac{1}{\mathrm{R}_{2}}$ and $\mathrm{R}_{2}=\mathrm{h} / 2$
$\therefore \rho g h=T\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}\right)=\mathrm{T}\left(0+\frac{1}{\mathrm{~h} / 2}\right)$
$h^{2}=\frac{2 T}{\rho g}$
$\mathrm{h}=\sqrt{\frac{2 \mathrm{~T}}{\rho \mathrm{~g}}}=\sqrt{\frac{2 \times 0.07}{10^{3} \times 10}}=\sqrt{\frac{14 \times 100}{10^{4} \times 100}}$
$\mathrm{h}=\sqrt{14} \mathrm{~mm}=3.741$
Q. 9 (A,B,C)
$\mathrm{n}_{1} \gg\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right)=\Delta \mathrm{n}$
$\mathrm{p}_{1}=\frac{\mathrm{n}_{1} \mathrm{RT}}{\mathrm{N}_{\mathrm{A}}} \quad \mathrm{p}_{2}=\frac{\mathrm{n}_{2} \mathrm{RT}}{\mathrm{N}_{\mathrm{A}}}$
$\mathrm{F}=\left(\mathrm{n}_{1}-\mathrm{n}_{2}\right) \mathrm{k}_{\mathrm{B}} \mathrm{TS}=\Delta \mathrm{nk}_{\mathrm{B}} \mathrm{TS}(\mathrm{A})$
$\mathrm{V}=\frac{\Delta \mathrm{nk}_{\mathrm{B}} \mathrm{TS}}{\beta}$
Force balance \Rightarrow Pressure \times Area $=$ Total number of molecules $\times \beta \mathrm{v}$

$$
\begin{align*}
& \Delta \mathrm{nk}_{\mathrm{B}} \mathrm{TS}=\ell \mathrm{n}_{1} \mathrm{~S} \beta \mathrm{v} \\
& \Rightarrow \mathrm{n}_{1} \beta \mathrm{v} \ell=\Delta \mathrm{nk}_{\mathrm{B}} \mathrm{~T} \tag{B}
\end{align*}
$$

Total number of molecules $/ \mathrm{sec}=\frac{\left(\mathrm{n}_{1} \mathrm{vdt}\right) \mathrm{S}}{\mathrm{dt}}$
$=\mathrm{n}_{1} \mathrm{vS}=\frac{\Delta \mathrm{nk}_{\mathrm{B}} \mathrm{TvS}}{\beta \mathrm{v} \ell}$
$=\left(\frac{\Delta \mathrm{n}}{\ell}\right)\left(\frac{\mathrm{k}_{\mathrm{B}} \mathrm{T}}{\beta}\right) \mathrm{S}$
(C)

As $\Delta \mathrm{n}$ will decrease with time therefore rate of molecules getting transfer decreases with time.

